cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A369511 Expansion of (1/x) * Series_Reversion( x * ((1-x)^2-x^3)^2 ).

Original entry on oeis.org

1, 4, 26, 206, 1815, 17082, 168159, 1710234, 17828973, 189504744, 2045971440, 22374997320, 247344411792, 2759394009008, 31027178033064, 351270123392892, 4000793799046578, 45809545263096832, 527010005799822844, 6088666065809281348, 70612995488695876634
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^2-x^3)^2)/x)
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n+k+1, k)*binomial(5*n-k+3, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+k+1,k) * binomial(5*n-k+3,n-3*k).

A369513 Expansion of (1/x) * Series_Reversion( x * ((1-x)^3-x^2)^2 ).

Original entry on oeis.org

1, 6, 59, 704, 9317, 131534, 1940819, 29572146, 461725783, 7348829928, 118788308725, 1944758772450, 32180850839619, 537370617961928, 9043679909643500, 153238910560266234, 2612067747321247779, 44760267182734834916, 770626480741892413249
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x*((1-x)^3-x^2)^2)/x)
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(2*n+k+1, k)*binomial(7*n+k+5, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+k+1,k) * binomial(7*n+k+5,n-2*k).
Showing 1-2 of 2 results.