A369569 a(n) = (n-1)! * n^n.
1, 4, 54, 1536, 75000, 5598720, 592950960, 84557168640, 15620794116480, 3628800000000000, 1035338990313196800, 355902198372945100800, 145077660657859734604800, 69194697632491737238732800, 38174841090323437500000000000, 24122334398245883325016178688000
Offset: 1
Keywords
Examples
The 4 labeled rooted trees with two nodes and two tags assigned are: . R R L1--L2 L1--L2 T1 T2 T2 T1 . R R L1--L2 L1--L2 T1 T2 T2 T1 .
Programs
-
Maple
seq(n^n*factorial(n-1), n=1..16)
-
Mathematica
Table[n^n*(n-1)!, {n, 1, 16}]
-
PARI
a(n) = (n-1)!*n^n
Formula
a(n) = n! * n^(n-1).
a(n) = Integral_{x>=0} x^(n-1) * exp(-x/n) dx.
a(n) = n! * [x^n] (1/n)*sinh(n*x)^n. - Stefano Spezia, Feb 21 2024
Comments