A369625 Frobenius-Perron dimensions of simple integral fusion rings of rank 4.
574, 7315, 63436, 65971, 68587, 90590, 113310, 310730, 311343, 494102, 532159, 585123, 1012810, 1043710, 1107139, 1152907, 1185558, 1343202, 1411338, 1419779, 1425114, 1483682, 1745610, 1898038, 1916226, 2112179, 2161715, 2175315, 2630642, 2753395, 2898555
Offset: 1
References
- W. Bruns and S. Palcoux, Classifying simple integral fusion rings, work in progress.
- P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor Categories, Mathematical Surveys and Monographs Volume 205 (2015).
Links
- Winfried Bruns and Sébastien Palcoux, Table of n, a(n) for n = 1..298
- M. A. Alekseyev, W. Bruns, S. Palcoux, and F. V. Petrov, Classification of integral modular data up to rank 13, arXiv:2302.01613 [math.QA], 2023-2024.
- W. Bruns, B. Ichim, C. Söger and U. von der Ohe, Normaliz. Algorithms for rational cones and affine monoids. See also the paper in J. Algebra 324 (2010), no. 5, 1098--1113.
- S. Palcoux, Exotic Integral Quantum Symmetry, Slides.
- S. Palcoux, Why study simple integral fusion categories?, YouTube video.
- S. Palcoux, TPE&Cat Semester 1 Session 23, YouTube video.
- S. Palcoux, TPE&Cat Semester 1 Session 24, YouTube video.
- S. Palcoux, Are there infinitely many simple integral fusion rings of rank 4?, MathOverflow, 2024-01-28.
Programs
-
Python
# requires Normaliz from version 3.10.2 import math import PyNormaliz from PyNormaliz import * NmzSetNumberOfNormalizThreads(1) def function(N): L = [] sN1 = math.isqrt(N//3) sN = math.isqrt(N) for i1 in range(3, sN1): m1 = min(sN, N - i1**2, i1**2 + 1) for i2 in range(i1+1, m1): m2 = min(sN, N - i1**2 - i2**2, i2**2 + 1) for i3 in range(i2+1, m2): n = 1 + i1**2 + i2**2 + i3**2 if n <= N: C = Cone(fusion_type = [[1,i1,i2,i3]]) l = C.FusionRings() if len(l)>0: L.append(n) L.sort() return(L) print(function(1000))
Extensions
Terms a(13) and beyond from Sébastien Palcoux, Dec 30 2024
Comments