cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369642 Composite numbers k, not squarefree semiprimes, such that k' is a sum of distinct primorial numbers, where k' stands for the arithmetic derivative of k, A003415.

Original entry on oeis.org

9, 16, 28, 30, 45, 108, 112, 136, 189, 198, 210, 212, 225, 236, 244, 246, 282, 290, 361, 374, 399, 435, 507, 1480, 1940, 2132, 2212, 2308, 2356, 2524, 2655, 2766, 2802, 3018, 3054, 3501, 3590, 3771, 3938, 4225, 4454, 4755, 4809, 5005, 5763, 6123, 6771, 9024, 9936, 10295, 11881, 12221, 16296, 22491, 24389, 26865
Offset: 1

Views

Author

Antti Karttunen, Jan 31 2024

Keywords

Comments

Composite numbers k, not squarefree semiprimes, such that A327859(k) = A276086(A003415(k)) is squarefree number, or equally, k' is in A276156.
Squares that appear in this sequence: 9, 16, 225, 361, 4225, 11881, 1371241, 1635841, 225930961, 228644641, 229189321, 262083721, ...

Crossrefs

Sequence A369641 without any terms of A006881.
Cf. A003415, A276086, A276156, A327859, A369647 (subsequence after its two initial terms).
Nonsquarefree terms all occur in A369639.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    ismaxprimobasedigit_at_most(n,k) = { my(s=0, p=2); while(n, if((n%p)>k, return(0)); n = n\p; p = nextprime(1+p)); (1); };
    A369640(n) = if(n<2 || isprime(n), 0, ismaxprimobasedigit_at_most(A003415(n),1));
    isA369642(n) = (((bigomega(n)>2)||(bigomega(n)>omega(n))) && A369640(n));