A369642 Composite numbers k, not squarefree semiprimes, such that k' is a sum of distinct primorial numbers, where k' stands for the arithmetic derivative of k, A003415.
9, 16, 28, 30, 45, 108, 112, 136, 189, 198, 210, 212, 225, 236, 244, 246, 282, 290, 361, 374, 399, 435, 507, 1480, 1940, 2132, 2212, 2308, 2356, 2524, 2655, 2766, 2802, 3018, 3054, 3501, 3590, 3771, 3938, 4225, 4454, 4755, 4809, 5005, 5763, 6123, 6771, 9024, 9936, 10295, 11881, 12221, 16296, 22491, 24389, 26865
Offset: 1
Keywords
Links
Crossrefs
Programs
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); ismaxprimobasedigit_at_most(n,k) = { my(s=0, p=2); while(n, if((n%p)>k, return(0)); n = n\p; p = nextprime(1+p)); (1); }; A369640(n) = if(n<2 || isprime(n), 0, ismaxprimobasedigit_at_most(A003415(n),1)); isA369642(n) = (((bigomega(n)>2)||(bigomega(n)>omega(n))) && A369640(n));
Comments