cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A327859 a(n) = A276086(A003415(n)), where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 1, 2, 2, 9, 2, 18, 2, 25, 5, 10, 2, 225, 2, 30, 15, 21, 2, 750, 2, 625, 45, 50, 2, 525, 45, 150, 3750, 21, 2, 14, 2, 18375, 75, 250, 25, 49, 2, 750, 225, 735, 2, 630, 2, 875, 210, 1250, 2, 385875, 75, 1050, 375, 13125, 2, 36750, 225, 1029, 1125, 14, 2, 1029, 2, 42, 5250, 2941225, 125, 98, 2, 1225, 1875, 78750
Offset: 0

Views

Author

Antti Karttunen, Sep 30 2019

Keywords

Comments

Sequence contains only terms of A048103.
Are there fixed points other than 1, 2, 10, 15, 5005? (There are none in the range 5006 .. 402653184.) See A369650.
Records occur at n = 0, 2, 4, 6, 8, 12, 18, 27, 32, 48, 64, 80, 144, 224, 256, 336, 448, 480, 512, 1728, ... (see also A131117).
a(n) and n are never multiples of 9 at the same time, thus the fixed points certainly exclude any terms of A008591. For a proof, consider my comment in A047257 and that A003415(9*n) is always a multiple of 3. - Antti Karttunen, Feb 08 2024

Crossrefs

Cf. A003415, A008591, A048103, A131117, A276086, A327858, A327860, A341517 [= mu(a(n))], A341518 (k where a(k) is squarefree), A369641 (composite k where a(k) is squarefree), A369642.
Cf. A370114 (where a(k) is a multiple of k), A370115 (where k is a multiple of a(k)), A369650.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327859(n) = A276086(A003415(n));

Formula

a(n) = A276086(A003415(n)).
a(p) = 2 for all primes p.

A369647 Nonzero numbers k in A341518 for which A051903(k) attains novel values.

Original entry on oeis.org

1, 2, 9, 16, 108, 9024, 2990880, 995336192, 1805726080
Offset: 1

Views

Author

Antti Karttunen, Feb 02 2024

Keywords

Comments

Indices of record values of A051903 attained for the terms of A341518 is a subsequence: 1, 2, 9, 16, 9024, 995336192.

Examples

			           k   factorization           max.exp         k'    A049345(k')
           1                              0,           0,            0
           2 = 2^1,                       1,           1,            1
           9 = 3^2,                       2,           6,          100
          16 = 2^4,                       4,          32,         1010
         108 = 2^2 * 3^3,                 3,         216,        10100
        9024 = 2^6 * 3 * 47,              6,       30272,      1011010
     2990880 = 2^5 * 3^2 * 5 * 31 * 67,   5,    10210416,    110010100
   995336192 = 2^13 * 121501,            13,  6469693440,  10000010000
  1805726080 = 2^7 * 5 * 157 * 17971,     7,  6692788416,  11000100100.
See also the examples at A351073 and A369649.
		

Crossrefs

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    ismaxprimobasedigit_at_most(n,k) = { my(s=0, p=2); while(n, if((n%p)>k, return(0)); n = n\p; p = nextprime(1+p)); (1); };
    isA341518(n) = ismaxprimobasedigit_at_most(A003415(n),1);
    m=Map(); for(n=1,2990880,if(isA341518(n),e=A051903(n);if(!mapisdefined(m,e),mapput(m,e,n);print1(n,", "))));

A369641 Composite numbers k such that k' is a sum of distinct primorial numbers, where k' stands for the arithmetic derivative of k, A003415.

Original entry on oeis.org

9, 10, 14, 15, 16, 28, 30, 45, 58, 62, 74, 87, 108, 112, 136, 155, 161, 189, 198, 203, 209, 210, 212, 217, 221, 225, 236, 244, 246, 247, 282, 290, 299, 323, 361, 374, 399, 422, 435, 478, 482, 507, 717, 1055, 1205, 1477, 1480, 1631, 1673, 1687, 1940, 2132, 2189, 2212, 2308, 2356, 2519, 2524, 2561, 2587, 2655, 2766
Offset: 1

Views

Author

Antti Karttunen, Jan 31 2024

Keywords

Comments

Composite terms of A341518, i.e., composite numbers k such that A327859(k) = A276086(A003415(k)) is squarefree number, or equally, k' is in A276156.

Crossrefs

Setwise difference A341518 \ A158611.
Cf. A003415, A276086, A276156, A327859, A341517, A369640 (characteristic function).
Cf. A327978, A328243, A369642 (subsequences).

Programs

A369639 Numbers k, not squarefree, such that the maximal digit in the primorial base representation of k' is <= 3, where k' stands for the arithmetic derivative of k, A003415.

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 24, 25, 28, 32, 36, 40, 44, 45, 48, 49, 50, 54, 56, 60, 63, 68, 76, 81, 92, 96, 98, 99, 108, 112, 120, 121, 125, 136, 147, 153, 156, 160, 175, 184, 189, 192, 196, 198, 204, 208, 212, 220, 225, 228, 234, 236, 244, 250, 252, 268, 270, 280, 284, 289, 296, 300, 315, 316, 328, 333, 338, 340, 344, 361
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2024

Keywords

Comments

Nonsquarefree numbers k (A013929) such that A327859(k) = A276086(A003415(k)) is biquadratefree number (A046100), or equally that A328114(A003415(k)) <= 3.

Crossrefs

Nonsquarefree terms of A369642 form a subsequence.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    ismaxprimobasedigit_at_most(n,k) = { my(s=0, p=2); while(n, if((n%p)>k, return(0)); n = n\p; p = nextprime(1+p)); (1); };
    isA369639(n) = (n>0 && !issquarefree(n) && ismaxprimobasedigit_at_most(A003415(n),3));
Showing 1-4 of 4 results.