cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A369642 Composite numbers k, not squarefree semiprimes, such that k' is a sum of distinct primorial numbers, where k' stands for the arithmetic derivative of k, A003415.

Original entry on oeis.org

9, 16, 28, 30, 45, 108, 112, 136, 189, 198, 210, 212, 225, 236, 244, 246, 282, 290, 361, 374, 399, 435, 507, 1480, 1940, 2132, 2212, 2308, 2356, 2524, 2655, 2766, 2802, 3018, 3054, 3501, 3590, 3771, 3938, 4225, 4454, 4755, 4809, 5005, 5763, 6123, 6771, 9024, 9936, 10295, 11881, 12221, 16296, 22491, 24389, 26865
Offset: 1

Views

Author

Antti Karttunen, Jan 31 2024

Keywords

Comments

Composite numbers k, not squarefree semiprimes, such that A327859(k) = A276086(A003415(k)) is squarefree number, or equally, k' is in A276156.
Squares that appear in this sequence: 9, 16, 225, 361, 4225, 11881, 1371241, 1635841, 225930961, 228644641, 229189321, 262083721, ...

Crossrefs

Sequence A369641 without any terms of A006881.
Cf. A003415, A276086, A276156, A327859, A369647 (subsequence after its two initial terms).
Nonsquarefree terms all occur in A369639.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    ismaxprimobasedigit_at_most(n,k) = { my(s=0, p=2); while(n, if((n%p)>k, return(0)); n = n\p; p = nextprime(1+p)); (1); };
    A369640(n) = if(n<2 || isprime(n), 0, ismaxprimobasedigit_at_most(A003415(n),1));
    isA369642(n) = (((bigomega(n)>2)||(bigomega(n)>omega(n))) && A369640(n));

A370133 Numbers with no digit larger than 3 in primorial base, A049345.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2024

Keywords

Comments

Numbers k for which A328114(k) <= 3.
Numbers k such that A276086(k) is biquadratefree, A046100.

Crossrefs

Cf. A369639 (nonsquarefree numbers whose arithmetic derivative is in this sequence).
Cf. A370132, A276156 (subsequences).
Subsequence of A351576: a(n) differs from A351576(n-1) for the first time at n=97, where a(97) = 210, while A351576(96) = 120, a term not present here.

Programs

  • Mathematica
    q[n_] := Module[{k = n, p = 2, s = {}, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, AppendTo[s, r]; p = NextPrime[p]]; Count[s, ?(# > 3 &)] == 0]; Select[Range[0, 100], q] (* _Amiram Eldar, Mar 06 2024 *)
  • PARI
    ismaxprimobasedigit_at_most(n,k) = { my(s=0, p=2); while(n, if((n%p)>k, return(0)); n = n\p; p = nextprime(1+p)); (1); };
    isA370133(n) = ismaxprimobasedigit_at_most(n,3);
Showing 1-2 of 2 results.