A369645 Numbers k for which the difference A051903(k) - A328114(k) reaches a new maximum in range 1..k, where A051903 is the maximal exponent in the prime factorization of n, and A328114 is the maximal digit in the primorial base expansion of n.
1, 2, 8, 32, 256, 2560, 30720, 32768, 4194304, 20971520, 58720256, 234881024, 536870912, 1342177280
Offset: 1
Examples
k factorization max.exp. in primorial max digit diff base 1 0, 1, 1, -1 2 = 2^1, 1, 10, 1, 0 8 = 2^3, 3, 110, 1, 2 32 = 2^5, 5, 1010, 1, 4 256 = 2^8, 8, 11220, 2, 6 2560 = 2^9 * 5^1, 9, 111120, 2, 7 30720 = 2^11 * 3^1 * 5^1, 11, 1032000, 3, 8 32768 = 2^15, 15, 1120110, 2, 13 4194304 = 2^22, 22, 83876020, 8, 14 20971520 = 2^22 * 5^1, 22, 231462310, 6, 16 58720256 = 2^23 * 7^1, 23, 610501410, 6, 17 234881024 = 2^25 * 7^1, 25, 1141710210, 7, 18 536870912 = 2^29, 29, 296AA71010, 10, 19 1342177280 = 2^28 * 5^1, 28, 6071712310, 7, 21. On the penultimate row, letter "A" in the primorial base expansion stands for ten (10 in decimal), as 2^29 = 0*prime(0)# + 1*prime(1)# + 0*prime(2)# + 1*prime(3)# + 7*prime(4)# + 10*prime(5)# + 10*prime(6)# + 6*prime(7)# + 9*prime(8)# + 2*prime(9)#, where prime(n)# = A002110(n).