A369646 Numbers k such that the difference A051903(k) - A328114(A003415(k)) reaches a new maximum in range 1..k, where A051903 is the maximal exponent in the prime factorization of n, A328114 is the maximal digit in the primorial base expansion of n, and A003415 is the arithmetic derivative.
1, 8, 16, 832, 1024, 95232, 131072, 2097152, 1006632960, 1090519040
Offset: 1
Examples
k factorization max.exp. k' in primorial max digit diff base 1 0, 0, 0, 0 8 = 2^3, 3, 200, 2, 1 16 = 2^4, 4, 1010, 1, 3 832 = 2^6 * 13^1, 6, 111120, 2, 4 1024 = 2^10, 10, 222310, 3, 7 95232 = 2^10 * 3^1 * 31^1, 10, 10021220, 2, 8 131072 = 2^17, 17, 23132010, 3, 14 2097152 = 2^21, 21, 252354100, 5, 16 1006632960 = 2^26 * 3^1 * 5^1, 26, 23194866010, 9, 17 1090519040 = 2^24 * 5^1 * 13^1, 24, 22053155300, 5, 19. Here k' stands for the arithmetic derivative of k, A003415(k). Primorial base expansion is obtained with A049345.
Crossrefs
Programs
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A051903(n) = if((1==n),0,vecmax(factor(n)[, 2])); A328114(n) = { my(s=0, p=2); while(n, s = max(s, (n%p)); n = n\p; p = nextprime(1+p)); (s); }; A351097(n) = (A328114(A003415(n))-A051903(n)); m=A351097(1); print1(1,", "); for(n=2,oo,x=A351097(n); if(x