A369673 a(n) = Product_{k=0..n} (2^k + 2^(n-k)).
2, 9, 100, 2916, 231200, 50808384, 31258240000, 54112148361216, 264265663201280000, 3645603832850650497024, 142153785549232537600000000, 15673043740102659990892604030976, 4886752115388739132874502963200000000, 4309225323078788454199311474023086952546304, 10747393363422494556085100202291563069440000000000
Offset: 0
Keywords
Examples
a(0) = (1 + 1) = 2; a(1) = (1 + 2)*(2 + 1) = 9; a(2) = (1 + 2^2)*(2 + 2)*(2^2 + 1) = 100; a(3) = (1 + 2^3)*(2 + 2^2)*(2^2 + 2)*(2^3 + 1) = 2916; a(4) = (1 + 2^4)*(2 + 2^3)*(2^2 + 2^2)*(2^3 + 2)*(2^4 + 1) = 231200; a(5) = (1 + 2^5)*(2 + 2^4)*(2^2 + 2^3)*(2^3 + 2^2)*(2^4 + 2)*(2^5 + 1) = 50808384; a(6) = (1 + 2^6)*(2 + 2^5)*(2^2 + 2^4)*(2^3 + 2^3)*(2^4 + 2^2)*(2^5 + 2)*(2^6 + 1) = 31258240000; ... RELATED SERIES. Let F(x) be the g.f. of A369557, then F(1/2) = 2 + 9/2^2 + 100/2^6 + 2916/2^12 + 231200/2^20 + 50808384/2^30 + 31258240000/2^42 + 54112148361216/2^56 + ... + a(n)/2^(n*(n+1)) + ... = 6.800139835051923542641455169580774467247971025...
Programs
-
PARI
{a(n) = prod(k=0,n, 2^k + 2^(n-k))} for(n=0,15, print1(a(n),", "))
Formula
a(n) = Product_{k=0..n} (2^k + 2^(n-k)).
a(n) = 2^(n*(n+1)) * Product_{k=0..n} (1/2^k + 1/2^(n-k)).
a(n) = 2^(n*(n+1)/2)*QPochhammer(-2^n, 1/4, 1 + n). - Stefano Spezia, Feb 06 2024
From Vaclav Kotesovec, Feb 07 2024: (Start)
a(n) ~ c * 2^(3*n^2/4 + n), where
c = 3.676982087353134... = QPochhammer(-1, 1/4)^2/2 if n is even and
c = 3.676991719144565... = 2^(1/4) * QPochhammer(-2, 1/4)^2 / 9 if n is odd.
c_even / c_odd = EllipticTheta[2, 0, 1/2] / EllipticTheta[3, 0, 1/2] = JacobiTheta2(0, 1/2) / JacobiTheta3(0, 1/2) = 0.9999973805240351337720926619... (End)
Comments