A369696 Number of unordered pairs (p,q) of partitions of n such that the set of parts in q is equal to the set of parts in p.
1, 1, 2, 3, 5, 8, 12, 19, 27, 42, 61, 91, 130, 192, 271, 401, 556, 802, 1126, 1597, 2217, 3132, 4315, 6003, 8257, 11370, 15527, 21251, 28798, 39043, 52722, 70911, 95047, 127155, 169431, 225072, 298362, 393946, 519294, 682090, 894251, 1168258, 1524370, 1981554
Offset: 0
Keywords
Examples
a(5) = 8: (11111, 11111), (2111, 2111), (2111, 221), (221, 221), (311, 311), (32, 32), (41, 41), (5, 5).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..350
Programs
-
Maple
b:= proc(n, m, i) option remember; `if`(n=0, `if`(m=0, 1, 0), `if`(i<1, 0, b(n, m, i-1)+add(add( b(sort([n-i*j, m-i*h])[], i-1), h=1..m/i), j=1..n/i))) end: a:= n-> (b(n$3)+combinat[numbpart](n))/2: seq(a(n), n=0..50);
-
Mathematica
b[n_, m_, i_] := b[n, m, i] = If[n == 0, If[m == 0, 1, 0], If[i < 1, 0, b[n, m, i-1] + Sum[Sum[b[Sequence @@ Sort[{n-i*j, m-i*h}], i-1], {h, 1, m/i}], {j, 1, n/i}]]]; a[n_] := (b[n, n, n] + PartitionsP[n])/2; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 29 2024, after Alois P. Heinz *)