A369695 Number of ordered pairs (p,q) of partitions of n such that the set of parts in q is equal to the set of parts in p.
1, 1, 2, 3, 5, 9, 13, 23, 32, 54, 80, 126, 183, 283, 407, 626, 881, 1307, 1867, 2704, 3807, 5472, 7628, 10751, 14939, 20782, 28618, 39492, 53878, 73521, 99840, 134980, 181745, 244167, 326552, 435261, 578747, 766255, 1012573, 1332995, 1751164, 2291933, 2995566
Offset: 0
Keywords
Examples
a(5) = 9: (11111, 11111), (2111, 2111), (2111, 221), (221, 2111), (221, 221), (311, 311), (32, 32), (41, 41), (5, 5).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..350
Programs
-
Maple
b:= proc(n, m, i) option remember; `if`(n=0, `if`(m=0, 1, 0), `if`(i<1, 0, b(n, m, i-1)+add(add( b(sort([n-i*j, m-i*h])[], i-1), h=1..m/i), j=1..n/i))) end: a:= n-> b(n$3): seq(a(n), n=0..50);
-
Mathematica
b[n_, m_, i_] := b[n, m, i] = If[n == 0, If[m == 0, 1, 0], If[i < 1, 0, b[n, m, i-1] + Sum[Sum[b[Sequence @@ Sort[{n-i*j, m-i*h}], i-1], {h, 1, m/i}], {j, 1, n/i}]]]; a[n_] := b[n, n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 29 2024, after Alois P. Heinz *)