cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A369695 Number of ordered pairs (p,q) of partitions of n such that the set of parts in q is equal to the set of parts in p.

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 13, 23, 32, 54, 80, 126, 183, 283, 407, 626, 881, 1307, 1867, 2704, 3807, 5472, 7628, 10751, 14939, 20782, 28618, 39492, 53878, 73521, 99840, 134980, 181745, 244167, 326552, 435261, 578747, 766255, 1012573, 1332995, 1751164, 2291933, 2995566
Offset: 0

Views

Author

Alois P. Heinz, Jan 29 2024

Keywords

Examples

			a(5) = 9: (11111, 11111), (2111, 2111), (2111, 221), (221, 2111), (221, 221), (311, 311), (32, 32), (41, 41), (5, 5).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, i) option remember; `if`(n=0,
         `if`(m=0, 1, 0), `if`(i<1, 0, b(n, m, i-1)+add(add(
          b(sort([n-i*j, m-i*h])[], i-1), h=1..m/i), j=1..n/i)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, m_, i_] := b[n, m, i] = If[n == 0, If[m == 0, 1, 0], If[i < 1, 0, b[n, m, i-1] + Sum[Sum[b[Sequence @@ Sort[{n-i*j, m-i*h}], i-1], {h, 1, m/i}], {j, 1, n/i}]]];
    a[n_] := b[n, n, n];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 29 2024, after Alois P. Heinz *)

Formula

a(n) = 2*A369696(n) - A000041(n).
a(n) = 2*A369697(n) + A000041(n).
a(n) mod 2 = A040051(n).

A369697 Number of unordered pairs (p,q) of distinct partitions of n such that the set of parts in q is equal to the set of parts in p.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 4, 5, 12, 19, 35, 53, 91, 136, 225, 325, 505, 741, 1107, 1590, 2340, 3313, 4748, 6682, 9412, 13091, 18241, 25080, 34478, 47118, 64069, 86698, 117012, 157121, 210189, 280385, 372309, 493279, 650905, 856913, 1123675, 1471196, 1918293, 2497470
Offset: 0

Views

Author

Alois P. Heinz, Jan 29 2024

Keywords

Examples

			a(5) = 1: (221, 2111).
a(6) = 1: (2211, 21111).
a(7) = 4: (22111, 211111), (2221, 211111), (2221, 22111), (331, 31111).
a(8) = 5: (221111, 2111111), (22211, 2111111), (22211, 221111), (3221, 32111), (3311, 311111).
a(9) = 12: (2211111, 21111111), (222111, 21111111), (222111, 2211111), (22221, 21111111), (22221, 2211111), (22221, 222111), (32211, 321111), (33111, 3111111), (3321, 321111), (3321, 32211), (4221, 42111), (441, 411111).
a(10) = 19: (22111111, 211111111), (2221111, 211111111), (2221111, 22111111), (222211, 211111111), (222211, 22111111), (222211, 2221111), (322111, 3211111), (32221, 3211111), (32221, 322111), (331111, 31111111), (33211, 3211111), (33211, 322111), (33211, 32221), (3331, 31111111), (3331, 331111), (42211, 421111), (4411, 4111111), (442, 4222), (5221, 52111).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, i) option remember; `if`(n=0,
         `if`(m=0, 1, 0), `if`(i<1, 0, b(n, m, i-1)+add(add(
          b(sort([n-i*j, m-i*h])[], i-1), h=1..m/i), j=1..n/i)))
        end:
    a:= n-> (b(n$3)-combinat[numbpart](n))/2:
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, m_, i_] := b[n, m, i] = If[n == 0, If[m == 0, 1, 0], If[i < 1, 0, b[n, m, i-1] + Sum[Sum[b[Sequence @@ Sort[{n-i*j, m-i*h}], i-1], {h, 1, m/i}], { j, 1, n/i}]]];
    a[n_] := (b[n, n, n] - PartitionsP[n])/2;
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 29 2024, after Alois P. Heinz *)

Formula

a(n) = (A369695(n) - A000041(n))/2.
Showing 1-2 of 2 results.