cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369752 Expansion of e.g.f. exp(1 - (1+x)^4).

Original entry on oeis.org

1, -4, 4, 56, -104, -2464, 1696, 181184, 462016, -17069824, -141580544, 1593913856, 33015560704, -47193585664, -6973651011584, -50207289585664, 1214484253413376, 25500259291480064, -72069247145590784, -8696105637665603584, -81680899029758541824
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2024

Keywords

Crossrefs

Column k=4 of A369738.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[1-(1+x)^4],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 29 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(1-(1+x)^4)))

Formula

a(0) = 1; a(n) = -4 * (n-1)! * Sum_{k=1..min(4,n)} binomial(3,k-1) * a(n-k)/(n-k)!.
a(n) = Sum_{k=0..n} 4^k * Stirling1(n,k) * A000587(k).
D-finite with recurrence a(n) +4*a(n-1) +12*(n-1)*a(n-2) +12*(n-1)*(n-2)*a(n-3) +4*(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Feb 02 2024