cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369764 Maximal coefficient of (1 - x) * (1 - x^8) * (1 - x^27) * ... * (1 - x^(n^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 7, 7, 7, 8, 11, 18, 23, 28, 32, 40, 55, 58, 81, 118, 128, 171, 204, 327, 395, 555, 843, 1009, 1580, 2254, 3224, 4703, 6999, 4573, 6255, 7760, 12563, 15626, 22328, 33788, 47750, 51522, 84103, 120853, 168565, 312262, 306080
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=0, 1, expand(b(n-1)*(1-x^(n^3)))) end:
    a:= n-> max(coeffs(b(n))):
    seq(a(n), n=0..52);  # Alois P. Heinz, Jan 31 2024
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Expand[b[n-1]*(1-x^(n^3))]];
    a[n_] := Max[CoefficientList[b[n], x]];
    Table[a[n], {n, 0, 52}] (* Jean-François Alcover, Jul 07 2025, after Alois P. Heinz *)
  • PARI
    a(n)=vecmax(Vec(prod(k=1,n,1-x^(k^3))));
    vector(30,n,a(n-1)) \\ Joerg Arndt, Jan 31 2024
    
  • Python
    from collections import Counter
    def A369764(n):
        c = {0:1,1:-1}
        for i in range(2,n+1):
            d = Counter(c)
            for k in c:
                d[k+i**3] -= c[k]
            c = d
        return max(c.values()) # Chai Wah Wu, Jan 31 2024

Formula

Trivial bounds: 1 <= a(n) <= 2^n. - Charles R Greathouse IV, Jul 07 2025

Extensions

a(45)-a(52) from Alois P. Heinz, Jan 31 2024