A369770 a(n) is the maximal coefficient in the expansion of Product_{k=1..n} (1+k*x)^k.
1, 1, 8, 387, 192832, 1348952000, 142641794707200, 271057611231886800384, 10679112895658933205816311808, 9866210328276596971591655994333069312, 238373589086269734817383263830485997977600000000, 166142193793387680126634957823414405189312889036472320000000
Offset: 0
Keywords
Crossrefs
Cf. A065048 (maximal coefficient in Product_{k=1..n} (1+k*x) ).
Programs
-
Maple
b:= proc(n) b(n):= `if`(n=0, 1, expand(b(n-1)*(1+n*x)^n)) end: a:= n-> max(coeffs(b(n))): seq(a(n), n=0..11); # Alois P. Heinz, Jan 31 2024
-
PARI
a(n)=vecmax(Vec(prod(k=1,n,(1+k*x)^k))); vector(20,n,a(n-1))
-
Python
from collections import Counter from math import comb def A369770(n): c = {0:1} for k in range(1,n+1): d = Counter(c) for j in c: a = c[j] for i in range(1,k+1): d[j+i] += comb(k,i)*k**i*a c = d return max(c.values()) # Chai Wah Wu, Jan 31 2024