A369775 Maximal coefficient of (1 + x^2) * (1 + x^2 + x^3) * (1 + x^2 + x^3 + x^5) * ... * (1 + x^2 + ... + x^prime(n)).
1, 1, 2, 5, 16, 65, 293, 1807, 12946, 106475, 972260, 9858553, 109451903, 1323071345, 17398667717, 247055196932, 3753507625272, 60680317203979, 1043036844360792, 18969267205680868, 364107881070036688, 7366172106829696356, 156467911373737550264
Offset: 0
Keywords
Programs
-
Mathematica
Table[Max[CoefficientList[Product[(1 + Sum[x^Prime[j], {j, 1, i}]), {i, 1, n}], x]], {n, 0, 22}]
-
PARI
a(n) = vecmax(Vec(prod(k=1, n, 1 + sum(i=1, k, x^prime(i))))); \\ Michel Marcus, Feb 01 2024
-
Python
from collections import Counter from sympy import prime, primerange def A369775(n): if n == 0: return 1 c, p = {0:1}, list(primerange(prime(n)+1)) for k in range(1,n+1): d = Counter(c) for j in c: a = c[j] for i in p[:k]: d[j+i] += a c = d return max(c.values()) # Chai Wah Wu, Feb 01 2024