A369796 Number of permutations of [n] whose fixed points sum to n.
1, 1, 0, 1, 3, 13, 64, 406, 2737, 23044, 200509, 2078460, 22323513, 275402437, 3501602483, 50310672046, 739235942264, 12084285146335, 202054808987101, 3703410393626031, 69269248667062892, 1409725495837854024, 29169764518508360709, 651568557906956269430
Offset: 0
Keywords
Examples
a(0) = 1: the empty permutation. a(1) = 1: 1. a(3) = 1: 213. a(4) = 3: 1432, 2314, 3124. a(5) = 13: 13542, 15243, 21435, 23415, 24135, 31425, 34125, 34215, 41235, 42351, 43125, 43215, 52314. a(6) = 64: 123564, 123645, 132654, 134652, 136254, ..., 542136, 542316, 621435, 625413, 625431.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
- Wikipedia, Permutation
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, n*g(n-1)+(-1)^n) end: b:= proc(n, i, m) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, g(m), b(n, i-1, m)+b(n-i, min(n-i, i-1), m-1))) end: a:= n-> b(n$3): seq(a(n), n=0..23);