A369873 a(n) is the constant term in the expansion of Product_{d|n} (x^d + 1/x^d).
0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 2, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 34, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 6, 0, 0, 0, 28, 0, 0, 0, 2, 0, 26, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 4, 0, 2, 0
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Coefficient[Product[(x^d + 1/x^d), {d, Divisors[n]}], x, 0], {n, 1, 90}]
-
PARI
A369873(n) = { my(s=sigma(n),p=1); if(s%2 || s < 2*n, 0, fordiv(n, d, p *= ('x^d + 'x^-d)); polcoeff(p, 0)); }; \\ (cf. also code in A083206 and A379504) - Antti Karttunen, Jan 20 2025
-
Python
from collections import Counter from sympy import divisors def A369873(n): c = {0:1} for d in divisors(n,generator=True): b = Counter() for j in c: a = c[j] b[j+d] += a b[j-d] += a c = b return c[0] # Chai Wah Wu, Feb 05 2024
Formula
From Joerg Arndt, Feb 04 2024: (Start)
a(n) != 0 (only) for n in A083207.
a(n) = 2 * A083206(n). (End)
Extensions
Data section extended to a(105) by Antti Karttunen, Jan 20 2025
Comments