A369897 Numbers k such that k and k + 1 each have 10 prime divisors, counted with multiplicity.
3290624, 4122495, 4402431, 5675264, 6608384, 6890624, 7914752, 8614592, 9454400, 11553920, 12613887, 13466816, 14493248, 14853375, 15473024, 16719615, 17494784, 18272384, 18309375, 22784895, 24890624, 25200800, 25869375, 25957503, 26903744, 26921727, 27510272, 28350080, 29761424, 31802624
Offset: 1
Keywords
Examples
a(5) = 6608384 is a term because 6608384 = 2^9 * 12907 and 6608385 = 3^6 * 5 * 7^2 * 37 each have 10 prime divisors, counted with multiplicity.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(priqueue): R:= NULL: count:= 0: initialize(Q); r:= 0: insert([-2^10, [2$10]],Q); while count < 30 do T:= extract(Q); if -T[1] = r + 1 then R:= R, r; count:= count+1; fi; r:= -T[1]; p:= T[2][-1]; q:= nextprime(p); for i from 10 to 1 by -1 while T[2][i] = p do insert([-r*(q/p)^(11-i), [op(T[2][1..i-1]),q$(11-i)]],Q); od od: R;
Comments