cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369910 Number of pairs (p,q) of partitions of n such that the set of parts in q is a proper subset of the set of parts in p.

Original entry on oeis.org

0, 0, 0, 1, 3, 4, 15, 20, 52, 83, 163, 246, 501, 727, 1295, 1994, 3375, 4969, 8267, 12036, 19287, 28270, 43511, 62799, 96364, 137358, 204388, 291607, 427446, 601257, 874088, 1218524, 1743989, 2424096, 3422084, 4718626, 6622937, 9053800, 12559895, 17112883
Offset: 0

Views

Author

Alois P. Heinz, Feb 05 2024

Keywords

Examples

			a(5) = 4: (2111, 11111), (221, 11111), (311, 11111), (41, 11111).
a(6) = 15: (21111, 111111), (21111, 222), (2211, 111111), (2211, 222), (3111, 111111), (321, 111111), (321, 21111), (321, 2211), (321, 222), (321, 3111), (3111, 33), (321, 33), (411, 111111), (42, 222), (51, 111111).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, i, t) option remember; `if`(n=0,
         `if`(t and m=0, 1, 0), `if`(i<1, 0, b(n, m, i-1, t)+add(
          add(b(n-i*j, m-i*h, i-1, h=0 or t), h=0..m/i), j=1..n/i)))
        end:
    a:= n-> b(n$3, false):
    seq(a(n), n=0..42);
  • Mathematica
    b[n_, m_, i_, t_] := b[n, m, i, t] = If[n == 0,
       If[t && m == 0, 1, 0], If[i < 1, 0, b[n, m, i-1, t] +
       Sum[Sum[b[n-i*j, m-i*h, i-1, h == 0 || t], {h, 0, m/i}], {j, 1, n/i}]]];
    a[n_] := b[n, n, n, False];
    Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Feb 29 2024, after Alois P. Heinz *)