A369910 Number of pairs (p,q) of partitions of n such that the set of parts in q is a proper subset of the set of parts in p.
0, 0, 0, 1, 3, 4, 15, 20, 52, 83, 163, 246, 501, 727, 1295, 1994, 3375, 4969, 8267, 12036, 19287, 28270, 43511, 62799, 96364, 137358, 204388, 291607, 427446, 601257, 874088, 1218524, 1743989, 2424096, 3422084, 4718626, 6622937, 9053800, 12559895, 17112883
Offset: 0
Keywords
Examples
a(5) = 4: (2111, 11111), (221, 11111), (311, 11111), (41, 11111). a(6) = 15: (21111, 111111), (21111, 222), (2211, 111111), (2211, 222), (3111, 111111), (321, 111111), (321, 21111), (321, 2211), (321, 222), (321, 3111), (3111, 33), (321, 33), (411, 111111), (42, 222), (51, 111111).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..350
Programs
-
Maple
b:= proc(n, m, i, t) option remember; `if`(n=0, `if`(t and m=0, 1, 0), `if`(i<1, 0, b(n, m, i-1, t)+add( add(b(n-i*j, m-i*h, i-1, h=0 or t), h=0..m/i), j=1..n/i))) end: a:= n-> b(n$3, false): seq(a(n), n=0..42);
-
Mathematica
b[n_, m_, i_, t_] := b[n, m, i, t] = If[n == 0, If[t && m == 0, 1, 0], If[i < 1, 0, b[n, m, i-1, t] + Sum[Sum[b[n-i*j, m-i*h, i-1, h == 0 || t], {h, 0, m/i}], {j, 1, n/i}]]]; a[n_] := b[n, n, n, False]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Feb 29 2024, after Alois P. Heinz *)