cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369911 a(n) = Sum_{p|n, p prime} p * sopf(n/p).

Original entry on oeis.org

0, 0, 0, 4, 0, 12, 0, 4, 9, 20, 0, 16, 0, 28, 30, 4, 0, 21, 0, 24, 42, 44, 0, 16, 25, 52, 9, 32, 0, 62, 0, 4, 66, 68, 70, 25, 0, 76, 78, 24, 0, 82, 0, 48, 39, 92, 0, 16, 49, 45, 102, 56, 0, 21, 110, 32, 114, 116, 0, 66, 0, 124, 51, 4, 130, 122, 0, 72, 138, 118, 0, 25
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2024

Keywords

Comments

Dirichlet convolution of A061397(n) and A008472(n). - Wesley Ivan Hurt, Jul 10 2025

Crossrefs

Cf. A008472 (sopf), A061397, A369744.

Programs

  • Mathematica
    a[n_] := Sum[p, {p, Select[Divisors[n], PrimeQ]}]; Table[DivisorSum[n, #*a[n/#] &, PrimeQ[#] &], {n, 100}]
  • PARI
    A008472(n) = vecsum(factor(n)[, 1]);
    A369911(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i,1]*A008472(n/f[i, 1]))); \\ Antti Karttunen, Jan 23 2025

Formula

From Wesley Ivan Hurt, Jul 10 2025: (Start)
a(n) = Sum_{d|n} A061397(d) * A008472(n/d).
a(p^k) = p^2 * (1-floor(1/k)) for p prime and k>=1. (End)