A369924 Number of uniform words of length n with adjacent elements unequal using an infinite alphabet up to permutations of the alphabet.
1, 1, 1, 1, 2, 1, 7, 1, 38, 30, 331, 1, 5560, 1, 47846, 164585, 815693, 1, 35149698, 1, 338596631, 4420377702, 4939227217, 1, 1430570927009, 66218360626, 2850860253242, 372419004321831, 628358300200811, 1, 156433852692766134, 1, 2606291948338277064
Offset: 0
Keywords
Examples
The a(4) = 2 words are abab, abcd. The a(6) = 7 words are ababab, abacbc, abcabc, abcacb, abcbac, abcbca, abcdef. The a(4) = 2 set partitions are {{1,3}, {2,4}} and {{1},{2},{3},{4}}.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
PARI
\\ Needs T(n,k) from A322013. a(n) = {if(n==0, 1, sumdiv(n, d, T(d, n/d)))}
Formula
a(n) = Sum_{d|n} A322013(d, n/d) for n > 0.
a(p) = 1 for prime p.
Comments