A369928 Triangle read by rows: T(n,k) is the number of simple graphs on n labeled vertices with k edges and without endpoints, n >= 0, 0 <= k <= n*(n-1)/2.
1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 4, 3, 6, 1, 1, 0, 0, 10, 15, 42, 90, 100, 45, 10, 1, 1, 0, 0, 20, 45, 162, 595, 1590, 3075, 3655, 2703, 1335, 455, 105, 15, 1, 1, 0, 0, 35, 105, 462, 2310, 9495, 32130, 85365, 166341, 231861, 237125, 184380, 111870, 53634, 20307, 5985, 1330, 210, 21, 1
Offset: 0
Examples
Triangle begins: [0] 1; [1] 1; [2] 1, 0; [3] 1, 0, 0, 1; [4] 1, 0, 0, 4, 3, 6, 1; [5] 1, 0, 0, 10, 15, 42, 90, 100, 45, 10, 1; [6] 1, 0, 0, 20, 45, 162, 595, 1590, 3075, 3655, 2703, 1335, 455, 105, 15, 1;
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1350 (rows 0..20)
Programs
-
PARI
\\ row(n) gives n-th row as vector. row(n)={my(A=x/exp(x*y + O(x*x^n))); Vecrev(polcoef(serlaplace(exp(y*x^2/2 + O(x*x^n)) * sum(k=0, n, (1 + y)^binomial(k, 2)*A^k/k!)), n), 1 + binomial(n,2))} { for(n=0, 6, print(row(n))) }