A369929 Array read by antidiagonals: T(n,k) is the number of achiral noncrossing partitions composed of n blocks of size k.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 3, 6, 1, 1, 1, 1, 3, 5, 7, 10, 1, 1, 1, 1, 4, 5, 16, 12, 20, 1, 1, 1, 1, 4, 7, 18, 31, 30, 35, 1, 1, 1, 1, 5, 7, 31, 35, 102, 55, 70, 1, 1, 1, 1, 5, 9, 34, 64, 136, 213, 143, 126, 1
Offset: 0
Examples
Array begins: =============================================== n\k| 1 2 3 4 5 6 7 8 9 ... ---+------------------------------------------- 0 | 1 1 1 1 1 1 1 1 1 ... 1 | 1 1 1 1 1 1 1 1 1 ... 2 | 1 1 1 1 1 1 1 1 1 ... 3 | 1 2 2 3 3 4 4 5 5 ... 4 | 1 3 3 5 5 7 7 9 9 ... 5 | 1 6 7 16 18 31 34 51 55 ... 6 | 1 10 12 31 35 64 70 109 117 ... 7 | 1 20 30 102 136 296 368 651 775 ... 8 | 1 35 55 213 285 663 819 1513 1785 ... 9 | 1 70 143 712 1155 3142 4495 9304 12350 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
- Michel Bousquet and Cédric Lamathe, On symmetric structures of order two, Discrete Math. Theor. Comput. Sci. 10 (2008), 153-176. See Table 1.
- Wikipedia, Fuss-Catalan number.
- Wikipedia, Noncrossing partition.
Crossrefs
Programs
-
PARI
\\ u(n,k,r) are Fuss-Catalan numbers. u(n,k,r) = {r*binomial(k*n + r, n)/(k*n + r)} e(n,k) = {sum(j=0, n\2, u(j, k, 1+(n-2*j)*k/2))} T(n, k)={if(n==0, 1, if(k%2, if(n%2, 2*u(n\2, k, (k+1)/2), u(n/2, k, 1) + u(n/2-1, k, k)), e(n, k) + if(n%2, u(n\2, k, k/2)))/2)}
Comments