A369931 Triangle read by rows: T(n,k) is the number of labeled simple graphs with n edges and k vertices and without endpoints or isolated vertices.
0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 6, 12, 0, 0, 0, 1, 85, 70, 0, 0, 0, 0, 100, 990, 465, 0, 0, 0, 0, 45, 2805, 11550, 3507, 0, 0, 0, 0, 10, 3595, 59990, 140420, 30016, 0, 0, 0, 0, 1, 2697, 147441, 1174670, 1802682, 286884, 0, 0, 0, 0, 0, 1335, 222516, 4710300, 22467312, 24556140, 3026655
Offset: 1
Examples
Triangle begins: 0; 0, 0; 0, 0, 1; 0, 0, 0, 3; 0, 0, 0, 6, 12; 0, 0, 0, 1, 85, 70; 0, 0, 0, 0, 100, 990, 465; 0, 0, 0, 0, 45, 2805, 11550, 3507; 0, 0, 0, 0, 10, 3595, 59990, 140420, 30016; 0, 0, 0, 0, 1, 2697, 147441, 1174670, 1802682, 286884; ... The T(3,3) = 1 matrix is: [0 1 1] [1 0 1] [1 1 0] The T(4,4) = 3 matrices are: [0 0 1 1] [0 1 0 1] [0 1 1 0] [0 0 1 1] [1 0 1 0] [1 0 0 1] [1 1 0 0] [0 1 0 1] [1 0 0 1] [1 1 0 0] [1 0 1 0] [0 1 1 0]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
Crossrefs
Programs
-
PARI
G(n)={my(A=x/exp(x*y + O(x*x^n))); exp(y*x^2/2 - x + O(x*x^n)) * sum(k=0, n, (1 + y + O(y*y^n))^binomial(k, 2)*A^k/k!)} T(n)={my(r=Vec(substvec(serlaplace(G(n)), [x, y], [y, x]))); vector(#r-1, i, Vecrev(Pol(r[i+1]/y), i))}
Formula
T(n,k) = k!*[x^k][y^n] exp(y*x^2/2 - x) * Sum_{j>=0} (1 + y)^binomial(j, 2)*(x/exp(y*x))^j/j!.
Comments