cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369953 a(n) is the least integer k such that the sum of the digits of k^2 is 9*n.

Original entry on oeis.org

0, 3, 24, 63, 264, 1374, 3114, 8937, 60663, 94863, 545793, 1989417, 5477133, 20736417, 82395387, 260191833, 706399164, 2428989417, 9380293167, 28105157886, 99497231067, 538479339417, 1974763271886, 4472135831667, 14106593458167, 62441868958167, 244744764757083, 836594274358167
Offset: 0

Views

Author

Zhining Yang, Feb 06 2024

Keywords

Comments

3|a(n).

Examples

			a(3)=63 because k=63 is the least integer k such that the sum of the digits of k^2 = 3969 is 9*3 = 27 (3+9+6+9 = 27).
		

Crossrefs

Programs

  • Mathematica
    n=1;lst={};For[k=0,k<10^8,k+=3,If[Total[IntegerDigits[k^2]]==9*n,AppendTo[lst,k];n++]];lst
  • PARI
    a(n) = my(k=0); while(sumdigits(k^2) != 9*n, k+=3); k; \\ Michel Marcus, Feb 17 2024
  • Python
    n=1
    lst=[]
    for k in range(0,10**8,3):
        if sum(int(d) for d in str(k*k))==9*n:
            lst.append(k)
            n=n+1
    print(lst)
    

Formula

a(n) = A067179(4n).

Extensions

a(19)-a(27) from Zhao Hui Du, Feb 09 2024