A369983 Maximum of the absolute value of the coefficients of (1 - x)^3 * (1 - x^2)^3 * (1 - x^3)^3 * ... * (1 - x^n)^3.
1, 3, 8, 15, 44, 50, 117, 186, 356, 561, 972, 1761, 3508, 5789, 10470, 19023, 35580, 62388, 113418, 205653, 376496, 674085, 1226181, 2211462, 4056220, 7287672, 13261764, 24005627, 43800562, 79033269, 143513301, 260061408, 473603594, 855436899, 1553736558, 2813222766
Offset: 0
Keywords
Programs
-
Mathematica
Table[Max[Abs[CoefficientList[Product[(1 - x^k)^3, {k, 1, n}], x]]], {n, 0, 35}]
-
PARI
a(n) = vecmax(apply(abs, Vec(prod(i=1, n, (1-x^i)^3)))); \\ Michel Marcus, Feb 07 2024
-
Python
from collections import Counter def A369983(n): c = {0:1} for k in range(1,n+1): d = Counter(c) for j in c: a = c[j] d[j+k] -= 3*a d[j+2*k] += 3*a d[j+3*k] -= a c = d return max(map(abs,c.values())) # Chai Wah Wu, Feb 07 2024