A369992 Irregular triangle read by rows: T(n,k) = (2^floor(n/2)+k)-th numerator coefficient of the polynomial q_n used to parametrize the canonical stribolic iterates h_n (of order 1), for n=0,1,2,... and 0 <= k <= A000045(n+1) - 2^floor(n/2).
1, -1, 1, -3, 2, 5, -4, -35, 28, 70, -100, 35, 3575, -5720, -6292, 19240, -14300, 3520, -13856700, 22170720, 24387792, -74574240, 217088300, -401631120, -382444920, 2019752592, -1656568485, -1470440400, 3671101720, -2832601200, 1025395800, -147804800
Offset: 0
Examples
q_5 = 1 + (-35*X^4 + 28*X^5 + 70*X^6 - 100*X^7 + 35*X^8) / 2 gives rise to row 5 (counting from 0) of the triangle (rows 0 to 7 are given): 1; -1; 1; -3, 2; 5, -4; -35, 28, 70, -100, 35; 3575, -5720, -6292, 19240, -14300, 3520; -13856700, 22170720, 24387792, -74574240, 217088300, -401631120, -382444920, 2019752592, -1656568485, -1470440400, 3671101720, -2832601200, 1025395800, -147804800;
Links
- Roland Miyamoto, Table of n, a(n) for n = 0..1228
- Roland Miyamoto, Polynomial parametrisation of the canonical iterates to the solution of -gamma*g' = g^{-1}, arXiv:2402.06618 [math.CO], 2024.
Programs
-
Python
from functools import cache, reduce; from sympy.abc import x; from sympy import lcm, fibonacci @cache def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1 @cache def Q(n): return (q(n).diff() * q(n-1)).integrate() @cache def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x def denom(c): return c.denominator if c%1 else 1 def row(n): qn = q(n); k0 = 1<<(n>>1); k1 = 1+fibonacci(n+1); dn = reduce(lcm,(denom(qn.coeff(x,k)) for k in range(k0,k1))); return [qn.coeff(x,k)*dn for k in range(k0,k1)] for n in range(15): print(row(n))
Comments