A370020
Table in which the g.f. of row n, R(n,x), satisfies Sum_{k=-oo..+oo} (-1)^k * (x^k + n*R(n,x))^k = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2), for n >= 1, as read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 1, 3, 7, 9, 1, 4, 12, 25, 22, 1, 5, 19, 53, 85, 63, 1, 6, 28, 99, 234, 301, 155, 1, 7, 39, 169, 529, 1041, 1086, 415, 1, 8, 52, 269, 1054, 2853, 4711, 3927, 1124, 1, 9, 67, 405, 1917, 6667, 15566, 21573, 14328, 2957, 1, 10, 84, 583, 3250, 13893, 42627, 85879, 99484, 52724, 8047, 1, 11, 103, 809, 5209, 26541, 101830, 275211, 477716, 461657, 194915, 21817
Offset: 1
This table of coefficients T(n,k) of x^k in R(n,x), n >= 1, k >= 1, begins:
A370021: [1, 1, 4, 9, 22, 63, 155, 415, ...];
A370022: [1, 2, 7, 25, 85, 301, 1086, 3927, ...];
A370023: [1, 3, 12, 53, 234, 1041, 4711, 21573, ...];
A370024: [1, 4, 19, 99, 529, 2853, 15566, 85879, ...];
A370025: [1, 5, 28, 169, 1054, 6667, 42627, 275211, ...];
A370026: [1, 6, 39, 269, 1917, 13893, 101830, 753255, ...];
A370027: [1, 7, 52, 405, 3250, 26541, 219311, 1828657, ...];
A370028: [1, 8, 67, 583, 5209, 47341, 435366, 4039863, ...];
A370029: [1, 9, 84, 809, 7974, 79863, 809131, 8270199, ...];
A370042: [1, 10, 103, 1089, 11749, 128637, 1423982, 15898231, ...];
...
where the n-th row function R(n,x) satisfies
Sum_{k=-oo..+oo} (-1)^k * (x^k + n*R(n,x))^k = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2).
-
{T(n,k) = my(A=[0,1]); for(i=0,k, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + n*Ser(A))^m ) - 1 - (n+2)*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/n ); A[k+1]}
for(n=1,12, for(k=1,10, print1(T(n,k),", "));print(""))
A370021
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + A(x))^n = 1 + 3*Sum_{n>=1} (-1)^n * x^(n^2).
Original entry on oeis.org
1, 1, 4, 9, 22, 63, 155, 415, 1124, 2957, 8047, 21817, 59048, 161870, 442675, 1214563, 3348145, 9228858, 25514319, 70682731, 195993889, 544578231, 1515027660, 4219560585, 11768353857, 32853953466, 91812137378, 256831830373, 719046731299, 2014808160498, 5650037329385
Offset: 1
G.f.: A(x) = x + x^2 + 4*x^3 + 9*x^4 + 22*x^5 + 63*x^6 + 155*x^7 + 415*x^8 + 1124*x^9 + 2957*x^10 + 8047*x^11 + 21817*x^12 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + A(x))^n = 1 - 3*x + 3*x^4 - 3*x^9 + 3*x^16 - 3*x^25 + 3*x^36 - 3*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.04543932020196352081239499480519595850147996376296857684...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + A)^n = (3*(Pi/2)^(1/4)/gamma(3/4) - 1)/2 = 0.87036870723417523211086...
(V.2) Let A = A(exp(-2*Pi)) = 0.00187095623366907901234297087932572258706353074482100743...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + A)^n = (3*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 1)/2 = 0.99626511456090713578995...
(V.3) Let A = A(-exp(-Pi)) = -0.04164083178192506029717066967023726841141127226704810579...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + A)^n = (3*Pi^(1/4)/gamma(3/4) - 1)/2 = 1.12965221681996202186297...
(V.4) Let A = A(-exp(-2*Pi)) = -0.00186398133004329627873834535037664668964585574963215266...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + A)^n = (3*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 1)/2 = 1.00560232823160863657151...
-
{a(n) = my(A=[0,1]); for(i=0,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 1*Ser(A))^m ) - 1 - 3*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1) ); A[n+1]}
for(n=1,30, print1(a(n),", "))
A370022
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 2*A(x))^n = 1 + 4*Sum_{n>=1} (-1)^n * x^(n^2).
Original entry on oeis.org
1, 2, 7, 25, 85, 301, 1086, 3927, 14328, 52724, 194915, 723845, 2699878, 10104968, 37933855, 142795810, 538829973, 2037596590, 7720231359, 29302685197, 111398230285, 424115408181, 1616860117052, 6171586558551, 23583939930835, 90218328876825, 345461395176495, 1324041033133129
Offset: 1
G.f.: A(x) = x + 2*x^2 + 7*x^3 + 25*x^4 + 85*x^5 + 301*x^6 + 1086*x^7 + 3927*x^8 + 14328*x^9 + 52724*x^10 + 194915*x^11 + 723845*x^12 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 2*A(x))^n = 1 - 4*x + 4*x^4 - 4*x^9 + 4*x^16 - 4*x^25 + 4*x^36 - 4*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.04761601613534030259384050896565071457116692089742172541...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 2*A)^n = 2*(Pi/2)^(1/4)/gamma(3/4) - 1 = 0.82715827631223364281448...
(V.2) Let A = A(exp(-2*Pi)) = 0.00187446330928756547025110339586987296984387228299321603...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 2*A)^n = 2*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 1 = 0.99253022912181427157991...
(V.3) Let A = A(-exp(-Pi)) = -0.03996785964385216049635981950386915887875531406265280233...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 2*A)^n = 2*Pi^(1/4)/gamma(3/4) - 1 = 1.1728696224266160291506...
(V.4) Let A = A(-exp(-2*Pi)) = -0.00186051333175936112600864666861119312780357024086759004...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 2*A)^n = 2*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 1 = 1.007469770975478182...
-
{a(n) = my(A=[0,1]); for(i=0,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 2*Ser(A))^m ) - 1 - 4*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/2 ); A[n+1]}
for(n=1,30, print1(a(n),", "))
A370023
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 3*A(x))^n = 1 + 5*Sum_{n>=1} (-1)^n * x^(n^2).
Original entry on oeis.org
1, 3, 12, 53, 234, 1041, 4711, 21573, 99484, 461657, 2154591, 10102701, 47555840, 224624016, 1064183887, 5055060411, 24068888061, 114841741098, 548992775523, 2628924592737, 12608597616161, 60558351876803, 291238387762452, 1402314223189959, 6759651098793285, 32617445956236720
Offset: 1
G.f.: A(x) = x + 3*x^2 + 12*x^3 + 53*x^4 + 234*x^5 + 1041*x^6 + 4711*x^7 + 21573*x^8 + 99484*x^9 + 461657*x^10 + 2154591*x^11 + 10102701*x^12 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 3*A(x))^n = 1 - 5*x + 5*x^4 - 5*x^9 + 5*x^16 - 5*x^25 + 5*x^36 - 5*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05001316702398359971645418498866690386932728399152644693...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 3*A)^n = (5*(Pi/2)^(1/4)/gamma(3/4) - 3)/2 = 0.78394784539029205351810...
(V.2) Let A = A(exp(-2*Pi)) = 0.001877983557643657576778844718492775838546798118866577860...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 3*A)^n = (5*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 3)/2 = 0.990662786402267839474...
(V.3) Let A = A(-exp(-Pi)) = -0.03842474691590612761867206263978602696713545771404819339...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 3*A)^n = (5*Pi^(1/4)/gamma(3/4) - 3)/2 = 1.216087028033270036438...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001857058214293085256892081751882664927312970576990961749...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 3*A)^n = (5*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 3)/2 = 1.009337213719347727619...
-
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 3*Ser(A))^m ) - 1 - 5*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/3 ); A[n+1]}
for(n=1,30, print1(a(n),", "))
A370024
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 4*A(x))^n = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).
Original entry on oeis.org
1, 4, 19, 99, 529, 2853, 15566, 85879, 477716, 2674070, 15047671, 85063429, 482733230, 2748703604, 15697194139, 89875431754, 515774659357, 2966016776556, 17088046518051, 98614323921685, 569967829487533, 3298876334401503, 19117753534875276, 110922240116613681, 644276475406441599
Offset: 1
G.f.: A(x) = x + 4*x^2 + 19*x^3 + 99*x^4 + 529*x^5 + 2853*x^6 + 15566*x^7 + 85879*x^8 + 477716*x^9 + 2674070*x^10 + 15047671*x^11 + 85063429*x^12 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 4*A(x))^n = 1 - 6*x + 6*x^4 - 6*x^9 + 6*x^16 - 6*x^25 + 6*x^36 - 6*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05266628449954901094912490050067062239110765179054552678...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 4*A)^n = 3*(Pi/2)^(1/4)/gamma(3/4) - 2 = 0.74073741446835046422172...
(V.2) Let A = A(exp(-2*Pi)) = 0.001881517053093894919707587041659521876650213322334450878...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 4*A)^n = 3*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 2 = 0.988795343682721407369...
(V.3) Let A = A(-exp(-Pi)) = -0.03699687105031477666227946508842289849689211763245984347...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 4*A)^n = 3*Pi^(1/4)/gamma(3/4) - 2 = 1.259304433639924043725...
(V.4) Let A = A(-exp(-2*Pi)) = -0.0018536159060139689998658447922411419770684746756327600438...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 4*A)^n = 3*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 2 = 1.011204656463217273143...
-
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 4*Ser(A))^m ) - 1 - 6*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/4 ); A[n+1]}
for(n=1,30, print1(a(n),", "))
A370026
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 6*A(x))^n = 1 + 8*Sum_{n>=1} (-1)^n * x^(n^2).
Original entry on oeis.org
1, 6, 39, 269, 1917, 13893, 101830, 753255, 5614504, 42110432, 317474187, 2403893757, 18270065438, 139305459960, 1065183756535, 8165168139498, 62729216570805, 482878316552298, 3723769699813119, 28762830132956421, 222495155932381229, 1723432870654770161, 13366099075223254740
Offset: 1
G.f.: A(x) = x + 6*x^2 + 39*x^3 + 269*x^4 + 1917*x^5 + 13893*x^6 + 101830*x^7 + 753255*x^8 + 5614504*x^9 + 42110432*x^10 + 317474187*x^11 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 6*A(x))^n = 1 - 8*x + 8*x^4 - 8*x^9 + 8*x^16 - 8*x^25 + 8*x^36 - 8*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05892551210473733684254468528377030200762221986684224912...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 6*A)^n = 4*(Pi/2)^(1/4)/gamma(3/4) - 3 = 0.65431655262446728562897...
(V.2) Let A = A(exp(-2*Pi)) = 0.001888624085511713374935799800784148455986111369097248489...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 6*A)^n = 4*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 3 = 0.985060458243628543159...
(V.3) Let A = A(-exp(-Pi)) = -0.03443859231795915470687740421610270983167641847531807729...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 6*A)^n = 4*Pi^(1/4)/gamma(3/4) - 3 = 1.3457392448532320583012...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001846769433141026637620872576636896819075507182864480219...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 6*A)^n = 4*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 3 = 1.01493954195095636419...
-
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 6*Ser(A))^m ) - 1 - 8*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/6 ); A[n+1]}
for(n=1,30, print1(a(n),", "))
A370027
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 7*A(x))^n = 1 + 9*Sum_{n>=1} (-1)^n * x^(n^2).
Original entry on oeis.org
1, 7, 52, 405, 3250, 26541, 219311, 1828657, 15360068, 129802889, 1102476535, 9403920685, 80507808128, 691425600548, 5954703569335, 51409228587355, 444806083780093, 3856115167020090, 33488422645226379, 291294693699275917, 2537471770952346625, 22133307405655321131
Offset: 1
G.f.: A(x) = x + 7*x^2 + 52*x^3 + 405*x^4 + 3250*x^5 + 26541*x^6 + 219311*x^7 + 1828657*x^8 + 15360068*x^9 + 129802889*x^10 + 1102476535*x^11 + 9403920685*x^12 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 7*A(x))^n = 1 - 9*x + 9*x^4 - 9*x^9 + 9*x^16 - 9*x^25 + 9*x^36 - 9*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.06265408791983395104830182276472061307372169283289177444...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 7*A)^n = (9*(Pi/2)^(1/4)/gamma(3/4) - 7)/2 = 0.6111061217025256963...
(V.2) Let A = A(exp(-2*Pi)) = 0.001892197774017068345453024031418945825808997896316975979...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 7*A)^n = (9*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 7)/2 = 0.98319301552408211105...
(V.3) Let A = A(-exp(-Pi)) = -0.03328815108533045197898037729675109506494860109014140530...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 7*A)^n = (9*Pi^(1/4)/gamma(3/4) - 7)/2 = 1.388956650459886065588...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001843365127917378852723125074532830028319143070315792225...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 7*A)^n = (9*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 7)/2 = 1.0168069846948259097...
-
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 7*Ser(A))^m ) - 1 - 9*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/7 ); A[n+1]}
for(n=1,30, print1(a(n),", "))
A370028
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 8*A(x))^n = 1 + 10*Sum_{n>=1} (-1)^n * x^(n^2).
Original entry on oeis.org
1, 8, 67, 583, 5209, 47341, 435366, 4039863, 37756884, 354968162, 3353718911, 31818650141, 302968462870, 2893794722996, 27715660576627, 266092098125266, 2560193682174621, 24680314094825608, 238332314224287603, 2305147105334586877, 22327315195346300461, 216542482388830668603
Offset: 1
G.f.: A(x) = x + 8*x^2 + 67*x^3 + 583*x^4 + 5209*x^5 + 47341*x^6 + 435366*x^7 + 4039863*x^8 + 37756884*x^9 + 354968162*x^10 + 3353718911*x^11 + 31818650141*x^12 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 8*A(x))^n = 1 - 10*x + 10*x^4 - 10*x^9 + 10*x^16 - 10*x^25 + 10*x^36 - 10*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.06689190492526765287210924306086051922855300119805422530...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 8*A)^n = 5*(Pi/2)^(1/4)/gamma(3/4) - 4 = 0.5678956907805841070...
(V.2) Let A = A(exp(-2*Pi)) = 0.001892197774017068345453024031418945825808997896316975979...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 8*A)^n = 5*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 4 = 0.98319301552408211105...
(V.3) Let A = A(-exp(-Pi)) = -0.03328815108533045197898037729675109506494860109014140530...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 8*A)^n = 5*Pi^(1/4)/gamma(3/4) - 4 = 1.432174056066540072876...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001839973350611618077357159042562240768956638628903670470...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 8*A)^n = 5*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 4 = 1.0186744274386954552...
-
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 8*Ser(A))^m ) - 1 - 10*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/8 ); A[n+1]}
for(n=1,30, print1(a(n),", "))
A370029
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 9*A(x))^n = 1 + 11*Sum_{n>=1} (-1)^n * x^(n^2).
Original entry on oeis.org
1, 9, 84, 809, 7974, 79863, 809131, 8270199, 85126516, 881290445, 9167900511, 95763822969, 1003839653480, 10554997636854, 111280621221379, 1176017223671139, 12454545436154097, 132149953604522106, 1404591515239624671, 14952277258870348035, 159396459604398283553
Offset: 1
G.f.: A(x) = x + 9*x^2 + 84*x^3 + 809*x^4 + 7974*x^5 + 79863*x^6 + 809131*x^7 + 8270199*x^8 + 85126516*x^9 + 881290445*x^10 + 9167900511*x^11 + 95763822969*x^12 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 9*A(x))^n = 1 - 11*x + 11*x^4 - 11*x^9 + 11*x^16 - 11*x^25 + 11*x^36 - 11*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.07175219834164736620386280600888962717215573957821859403...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 9*A)^n = (11*(Pi/2)^(1/4)/gamma(3/4) - 9)/2 = 0.5246852598586425177...
(V.2) Let A = A(exp(-2*Pi)) = 0.001899385878782719362352219788087550672661478114904760835...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 9*A)^n = (11*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 9)/2 = 0.97945813008498924684...
(V.3) Let A = A(-exp(-Pi)) = -0.03120408533767785789845054540220571847531668789278074466...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 9*A)^n = (11*Pi^(1/4)/gamma(3/4) - 9)/2 = 1.475391461673194080164...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001836594032195533189068390983153367342311468510211476381...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 9*A)^n = (11*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 9)/2 = 1.0205418701825650...
-
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 9*Ser(A))^m ) - 1 - 11*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/9 ); A[n+1]}
for(n=1,30, print1(a(n),", "))
A370042
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 10*A(x))^n = 1 + 12*Sum_{n>=1} (-1)^n * x^(n^2).
Original entry on oeis.org
1, 10, 103, 1089, 11749, 128637, 1423982, 15898231, 178717112, 2020360748, 22947819571, 261696375829, 2994717484790, 34373295184712, 395580223408591, 4563146810297938, 52747346257279381, 610871638149166758, 7086520419499114527, 82334442066436896541, 957935578573905521101
Offset: 1
G.f.: A(x) = x + 10*x^2 + 103*x^3 + 1089*x^4 + 11749*x^5 + 128637*x^6 + 1423982*x^7 + 15898231*x^8 + 178717112*x^9 + 2020360748*x^10 + 22947819571*x^11 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 10*A(x))^n = 1 - 12*x + 12*x^4 - 12*x^9 + 12*x^16 - 12*x^25 + 12*x^36 - 12*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.07738488286995169642543180751945321776018365032150702566...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 10*A)^n = 6*(Pi/2)^(1/4)/gamma(3/4) - 5 = 0.4814748289367009284...
(V.2) Let A = A(exp(-2*Pi)) = 0.001903000450057888437867399675031908155434474357834107336...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 10*A)^n = 6*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 5 = 0.9775906873654428147...
(V.3) Let A = A(-exp(-Pi)) = -0.03025721520362353256298796517975081121112509387406260314...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 10*A)^n = 6*Pi^(1/4)/gamma(3/4) - 5 = 1.518608867279848087...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001833227104147111248063467420834469150941590720555554025...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 10*A)^n = 6*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 5 = 1.0224093129264345...
-
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 10*Ser(A))^m ) - 1 - 12*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/10 ); A[n+1]}
for(n=1,30, print1(a(n),", "))
Showing 1-10 of 11 results.
Comments