cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A370020 Table in which the g.f. of row n, R(n,x), satisfies Sum_{k=-oo..+oo} (-1)^k * (x^k + n*R(n,x))^k = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2), for n >= 1, as read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 1, 3, 7, 9, 1, 4, 12, 25, 22, 1, 5, 19, 53, 85, 63, 1, 6, 28, 99, 234, 301, 155, 1, 7, 39, 169, 529, 1041, 1086, 415, 1, 8, 52, 269, 1054, 2853, 4711, 3927, 1124, 1, 9, 67, 405, 1917, 6667, 15566, 21573, 14328, 2957, 1, 10, 84, 583, 3250, 13893, 42627, 85879, 99484, 52724, 8047, 1, 11, 103, 809, 5209, 26541, 101830, 275211, 477716, 461657, 194915, 21817
Offset: 1

Views

Author

Paul D. Hanna, Feb 09 2024

Keywords

Comments

A related function is theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n * x^(n^2).

Examples

			This table of coefficients T(n,k) of x^k in R(n,x), n >= 1, k >= 1, begins:
A370021: [1,  1,   4,    9,    22,     63,     155,      415, ...];
A370022: [1,  2,   7,   25,    85,    301,    1086,     3927, ...];
A370023: [1,  3,  12,   53,   234,   1041,    4711,    21573, ...];
A370024: [1,  4,  19,   99,   529,   2853,   15566,    85879, ...];
A370025: [1,  5,  28,  169,  1054,   6667,   42627,   275211, ...];
A370026: [1,  6,  39,  269,  1917,  13893,  101830,   753255, ...];
A370027: [1,  7,  52,  405,  3250,  26541,  219311,  1828657, ...];
A370028: [1,  8,  67,  583,  5209,  47341,  435366,  4039863, ...];
A370029: [1,  9,  84,  809,  7974,  79863,  809131,  8270199, ...];
A370042: [1, 10, 103, 1089, 11749, 128637, 1423982, 15898231, ...];
...
where the n-th row function R(n,x) satisfies
Sum_{k=-oo..+oo} (-1)^k * (x^k + n*R(n,x))^k = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2).
		

Crossrefs

Programs

  • PARI
    {T(n,k) = my(A=[0,1]); for(i=0,k, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + n*Ser(A))^m ) - 1 - (n+2)*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/n ); A[k+1]}
    for(n=1,12, for(k=1,10, print1(T(n,k),", "));print(""))

Formula

The n-th row g.f. R(n,x) = Sum_{k>=1} T(n,k)*x^k satisfies the following formulas.
(1) Sum_{k=-oo..+oo} (-1)^k * (x^k + n*R(n,x))^k = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2).
(2) Sum_{k=-oo..+oo} (-1)^k * x^k * (x^k + n*R(n,x))^(k-1) = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2).
(3) Sum_{k=-oo..+oo} (-1)^k * x^k * (x^k + n*R(n,x))^k = 0.
(4) Sum_{k=-oo..+oo} (-1)^k * x^(k^2) / (1 + n*R(n,x)*x^k)^k = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2).
(5) Sum_{k=-oo..+oo} (-1)^k * x^(k^2) / (1 + n*R(n,x)*x^k)^(k+1) = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2).
(6) Sum_{k=-oo..+oo} (-1)^k * x^(k*(k+1)) / (1 + n*R(n,x)*x^k)^(k+1) = 0.

A370022 Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 2*A(x))^n = 1 + 4*Sum_{n>=1} (-1)^n * x^(n^2).

Original entry on oeis.org

1, 2, 7, 25, 85, 301, 1086, 3927, 14328, 52724, 194915, 723845, 2699878, 10104968, 37933855, 142795810, 538829973, 2037596590, 7720231359, 29302685197, 111398230285, 424115408181, 1616860117052, 6171586558551, 23583939930835, 90218328876825, 345461395176495, 1324041033133129
Offset: 1

Views

Author

Paul D. Hanna, Feb 09 2024

Keywords

Comments

A related function is theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n * x^(n^2).

Examples

			G.f.: A(x) = x + 2*x^2 + 7*x^3 + 25*x^4 + 85*x^5 + 301*x^6 + 1086*x^7 + 3927*x^8 + 14328*x^9 + 52724*x^10 + 194915*x^11 + 723845*x^12 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 2*A(x))^n = 1 - 4*x + 4*x^4 - 4*x^9 + 4*x^16 - 4*x^25 + 4*x^36 - 4*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.04761601613534030259384050896565071457116692089742172541...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 2*A)^n = 2*(Pi/2)^(1/4)/gamma(3/4) - 1 = 0.82715827631223364281448...
(V.2) Let A = A(exp(-2*Pi)) = 0.00187446330928756547025110339586987296984387228299321603...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 2*A)^n = 2*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 1 = 0.99253022912181427157991...
(V.3) Let A = A(-exp(-Pi)) = -0.03996785964385216049635981950386915887875531406265280233...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 2*A)^n = 2*Pi^(1/4)/gamma(3/4) - 1 = 1.1728696224266160291506...
(V.4) Let A = A(-exp(-2*Pi)) = -0.00186051333175936112600864666861119312780357024086759004...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 2*A)^n = 2*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 1 = 1.007469770975478182...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=0,n, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 2*Ser(A))^m ) - 1 - 4*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/2 ); A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (-1)^n * (x^n + 2*A(x))^n = 1 + 4*Sum_{n>=1} (-1)^n * x^(n^2).
(2) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 2*A(x))^(n-1) = 1 + 4*Sum_{n>=1} (-1)^n * x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 2*A(x))^n = 0.
(4) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 2*A(x)*x^n)^n = 1 + 4*Sum_{n>=1} (-1)^n * x^(n^2).
(5) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 2*A(x)*x^n)^(n+1) = 1 + 4*Sum_{n>=1} (-1)^n * x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / (1 + 2*A(x)*x^n)^(n+1) = 0.

A370023 Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 3*A(x))^n = 1 + 5*Sum_{n>=1} (-1)^n * x^(n^2).

Original entry on oeis.org

1, 3, 12, 53, 234, 1041, 4711, 21573, 99484, 461657, 2154591, 10102701, 47555840, 224624016, 1064183887, 5055060411, 24068888061, 114841741098, 548992775523, 2628924592737, 12608597616161, 60558351876803, 291238387762452, 1402314223189959, 6759651098793285, 32617445956236720
Offset: 1

Views

Author

Paul D. Hanna, Feb 09 2024

Keywords

Comments

A related function is theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n * x^(n^2).

Examples

			G.f.: A(x) = x + 3*x^2 + 12*x^3 + 53*x^4 + 234*x^5 + 1041*x^6 + 4711*x^7 + 21573*x^8 + 99484*x^9 + 461657*x^10 + 2154591*x^11 + 10102701*x^12 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 3*A(x))^n = 1 - 5*x + 5*x^4 - 5*x^9 + 5*x^16 - 5*x^25 + 5*x^36 - 5*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05001316702398359971645418498866690386932728399152644693...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 3*A)^n = (5*(Pi/2)^(1/4)/gamma(3/4) - 3)/2 = 0.78394784539029205351810...
(V.2) Let A = A(exp(-2*Pi)) = 0.001877983557643657576778844718492775838546798118866577860...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 3*A)^n = (5*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 3)/2 = 0.990662786402267839474...
(V.3) Let A = A(-exp(-Pi)) = -0.03842474691590612761867206263978602696713545771404819339...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 3*A)^n = (5*Pi^(1/4)/gamma(3/4) - 3)/2 = 1.216087028033270036438...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001857058214293085256892081751882664927312970576990961749...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 3*A)^n = (5*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 3)/2 = 1.009337213719347727619...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 3*Ser(A))^m ) - 1 - 5*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/3 ); A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (-1)^n * (x^n + 3*A(x))^n = 1 + 5*Sum_{n>=1} (-1)^n * x^(n^2).
(2) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 3*A(x))^(n-1) = 1 + 5*Sum_{n>=1} (-1)^n * x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 3*A(x))^n = 0.
(4) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 3*A(x)*x^n)^n = 1 + 5*Sum_{n>=1} (-1)^n * x^(n^2).
(5) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 3*A(x)*x^n)^(n+1) = 1 + 5*Sum_{n>=1} (-1)^n * x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / (1 + 3*A(x)*x^n)^(n+1) = 0.

A370024 Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 4*A(x))^n = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).

Original entry on oeis.org

1, 4, 19, 99, 529, 2853, 15566, 85879, 477716, 2674070, 15047671, 85063429, 482733230, 2748703604, 15697194139, 89875431754, 515774659357, 2966016776556, 17088046518051, 98614323921685, 569967829487533, 3298876334401503, 19117753534875276, 110922240116613681, 644276475406441599
Offset: 1

Views

Author

Paul D. Hanna, Feb 09 2024

Keywords

Comments

A related function is theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n * x^(n^2).

Examples

			G.f.: A(x) = x + 4*x^2 + 19*x^3 + 99*x^4 + 529*x^5 + 2853*x^6 + 15566*x^7 + 85879*x^8 + 477716*x^9 + 2674070*x^10 + 15047671*x^11 + 85063429*x^12 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 4*A(x))^n = 1 - 6*x + 6*x^4 - 6*x^9 + 6*x^16 - 6*x^25 + 6*x^36 - 6*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05266628449954901094912490050067062239110765179054552678...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 4*A)^n = 3*(Pi/2)^(1/4)/gamma(3/4) - 2 = 0.74073741446835046422172...
(V.2) Let A = A(exp(-2*Pi)) = 0.001881517053093894919707587041659521876650213322334450878...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 4*A)^n = 3*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 2 = 0.988795343682721407369...
(V.3) Let A = A(-exp(-Pi)) = -0.03699687105031477666227946508842289849689211763245984347...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 4*A)^n = 3*Pi^(1/4)/gamma(3/4) - 2 = 1.259304433639924043725...
(V.4) Let A = A(-exp(-2*Pi)) = -0.0018536159060139689998658447922411419770684746756327600438...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 4*A)^n = 3*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 2 = 1.011204656463217273143...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 4*Ser(A))^m ) - 1 - 6*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/4 ); A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (-1)^n * (x^n + 4*A(x))^n = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).
(2) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 4*A(x))^(n-1) = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 4*A(x))^n = 0.
(4) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 4*A(x)*x^n)^n = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).
(5) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 4*A(x)*x^n)^(n+1) = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / (1 + 4*A(x)*x^n)^(n+1) = 0.

A370025 Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 5*A(x))^n = 1 + 7*Sum_{n>=1} (-1)^n * x^(n^2).

Original entry on oeis.org

1, 5, 28, 169, 1054, 6667, 42627, 275211, 1791132, 11731613, 77242391, 510826889, 3391115560, 22586150402, 150866419771, 1010290295683, 6780795305121, 45602955247738, 307252705965207, 2073546683753911, 14014659243408481, 94851805738129599, 642767262413178788, 4360774590348465669
Offset: 1

Views

Author

Paul D. Hanna, Feb 09 2024

Keywords

Comments

A related function is theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n * x^(n^2).

Examples

			G.f.: A(x) = x + 5*x^2 + 28*x^3 + 169*x^4 + 1054*x^5 + 6667*x^6 + 42627*x^7 + 275211*x^8 + 1791132*x^9 + 11731613*x^10 + 77242391*x^11 + 510826889*x^12 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 5*A(x))^n = 1 - 7*x + 7*x^4 - 7*x^9 + 7*x^16 - 7*x^25 + 7*x^36 - 7*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05561899448885311185126383683351896617798185829954077412...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 5*A)^n = (7*(Pi/2)^(1/4)/gamma(3/4) - 5)/2 = 0.69752698354640887492534...
(V.2) Let A = A(exp(-2*Pi)) = 0.001885063870555508038278982205994616246272805466135524875...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 5*A)^n = (7*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 5)/2 = 0.986927900963174975264...
(V.3) Let A = A(-exp(-Pi)) = -0.03567173485605183837843763169616623725553901880108539739...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 5*A)^n = (7*Pi^(1/4)/gamma(3/4) - 5)/2 = 1.302521839246578051013...
(V.4) Let A = A(-exp(-2*Pi)) = -0.0018536159060139689998658447922411419770684746756327600438...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 5*A)^n = (7*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 5)/2 = 1.01307209920708681866...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 5*Ser(A))^m ) - 1 - 7*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/5 ); A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (-1)^n * (x^n + 5*A(x))^n = 1 + 7*Sum_{n>=1} (-1)^n * x^(n^2).
(2) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 5*A(x))^(n-1) = 1 + 7*Sum_{n>=1} (-1)^n * x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 5*A(x))^n = 0.
(4) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 5*A(x)*x^n)^n = 1 + 7*Sum_{n>=1} (-1)^n * x^(n^2).
(5) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 5*A(x)*x^n)^(n+1) = 1 + 7*Sum_{n>=1} (-1)^n * x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / (1 + 5*A(x)*x^n)^(n+1) = 0.

A370026 Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 6*A(x))^n = 1 + 8*Sum_{n>=1} (-1)^n * x^(n^2).

Original entry on oeis.org

1, 6, 39, 269, 1917, 13893, 101830, 753255, 5614504, 42110432, 317474187, 2403893757, 18270065438, 139305459960, 1065183756535, 8165168139498, 62729216570805, 482878316552298, 3723769699813119, 28762830132956421, 222495155932381229, 1723432870654770161, 13366099075223254740
Offset: 1

Views

Author

Paul D. Hanna, Feb 09 2024

Keywords

Comments

A related function is theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n * x^(n^2).

Examples

			G.f.: A(x) = x + 6*x^2 + 39*x^3 + 269*x^4 + 1917*x^5 + 13893*x^6 + 101830*x^7 + 753255*x^8 + 5614504*x^9 + 42110432*x^10 + 317474187*x^11 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 6*A(x))^n = 1 - 8*x + 8*x^4 - 8*x^9 + 8*x^16 - 8*x^25 + 8*x^36 - 8*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05892551210473733684254468528377030200762221986684224912...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 6*A)^n = 4*(Pi/2)^(1/4)/gamma(3/4) - 3 = 0.65431655262446728562897...
(V.2) Let A = A(exp(-2*Pi)) = 0.001888624085511713374935799800784148455986111369097248489...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 6*A)^n = 4*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 3 = 0.985060458243628543159...
(V.3) Let A = A(-exp(-Pi)) = -0.03443859231795915470687740421610270983167641847531807729...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 6*A)^n = 4*Pi^(1/4)/gamma(3/4) - 3 = 1.3457392448532320583012...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001846769433141026637620872576636896819075507182864480219...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 6*A)^n = 4*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 3 = 1.01493954195095636419...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 6*Ser(A))^m ) - 1 - 8*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/6 ); A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (-1)^n * (x^n + 6*A(x))^n = 1 + 8*Sum_{n>=1} (-1)^n * x^(n^2).
(2) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 6*A(x))^(n-1) = 1 + 8*Sum_{n>=1} (-1)^n * x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 6*A(x))^n = 0.
(4) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 6*A(x)*x^n)^n = 1 + 8*Sum_{n>=1} (-1)^n * x^(n^2).
(5) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 6*A(x)*x^n)^(n+1) = 1 + 8*Sum_{n>=1} (-1)^n * x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / (1 + 6*A(x)*x^n)^(n+1) = 0.

A370028 Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 8*A(x))^n = 1 + 10*Sum_{n>=1} (-1)^n * x^(n^2).

Original entry on oeis.org

1, 8, 67, 583, 5209, 47341, 435366, 4039863, 37756884, 354968162, 3353718911, 31818650141, 302968462870, 2893794722996, 27715660576627, 266092098125266, 2560193682174621, 24680314094825608, 238332314224287603, 2305147105334586877, 22327315195346300461, 216542482388830668603
Offset: 1

Views

Author

Paul D. Hanna, Feb 09 2024

Keywords

Comments

A related function is theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n * x^(n^2).

Examples

			G.f.: A(x) = x + 8*x^2 + 67*x^3 + 583*x^4 + 5209*x^5 + 47341*x^6 + 435366*x^7 + 4039863*x^8 + 37756884*x^9 + 354968162*x^10 + 3353718911*x^11 + 31818650141*x^12 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 8*A(x))^n = 1 - 10*x + 10*x^4 - 10*x^9 + 10*x^16 - 10*x^25 + 10*x^36 - 10*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.06689190492526765287210924306086051922855300119805422530...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 8*A)^n = 5*(Pi/2)^(1/4)/gamma(3/4) - 4 = 0.5678956907805841070...
(V.2) Let A = A(exp(-2*Pi)) = 0.001892197774017068345453024031418945825808997896316975979...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 8*A)^n = 5*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 4 = 0.98319301552408211105...
(V.3) Let A = A(-exp(-Pi)) = -0.03328815108533045197898037729675109506494860109014140530...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 8*A)^n = 5*Pi^(1/4)/gamma(3/4) - 4 = 1.432174056066540072876...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001839973350611618077357159042562240768956638628903670470...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 8*A)^n = 5*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 4 = 1.0186744274386954552...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 8*Ser(A))^m ) - 1 - 10*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/8 ); A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (-1)^n * (x^n + 8*A(x))^n = 1 + 10*Sum_{n>=1} (-1)^n * x^(n^2).
(2) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 8*A(x))^(n-1) = 1 + 10*Sum_{n>=1} (-1)^n * x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 8*A(x))^n = 0.
(4) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 8*A(x)*x^n)^n = 1 + 10*Sum_{n>=1} (-1)^n * x^(n^2).
(5) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 8*A(x)*x^n)^(n+1) = 1 + 10*Sum_{n>=1} (-1)^n * x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / (1 + 8*A(x)*x^n)^(n+1) = 0.

A370029 Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 9*A(x))^n = 1 + 11*Sum_{n>=1} (-1)^n * x^(n^2).

Original entry on oeis.org

1, 9, 84, 809, 7974, 79863, 809131, 8270199, 85126516, 881290445, 9167900511, 95763822969, 1003839653480, 10554997636854, 111280621221379, 1176017223671139, 12454545436154097, 132149953604522106, 1404591515239624671, 14952277258870348035, 159396459604398283553
Offset: 1

Views

Author

Paul D. Hanna, Feb 09 2024

Keywords

Comments

A related function is theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n * x^(n^2).

Examples

			G.f.: A(x) = x + 9*x^2 + 84*x^3 + 809*x^4 + 7974*x^5 + 79863*x^6 + 809131*x^7 + 8270199*x^8 + 85126516*x^9 + 881290445*x^10 + 9167900511*x^11 + 95763822969*x^12 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 9*A(x))^n = 1 - 11*x + 11*x^4 - 11*x^9 + 11*x^16 - 11*x^25 + 11*x^36 - 11*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.07175219834164736620386280600888962717215573957821859403...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 9*A)^n = (11*(Pi/2)^(1/4)/gamma(3/4) - 9)/2 = 0.5246852598586425177...
(V.2) Let A = A(exp(-2*Pi)) = 0.001899385878782719362352219788087550672661478114904760835...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 9*A)^n = (11*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 9)/2 = 0.97945813008498924684...
(V.3) Let A = A(-exp(-Pi)) = -0.03120408533767785789845054540220571847531668789278074466...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 9*A)^n = (11*Pi^(1/4)/gamma(3/4) - 9)/2 = 1.475391461673194080164...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001836594032195533189068390983153367342311468510211476381...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 9*A)^n = (11*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 9)/2 = 1.0205418701825650...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 9*Ser(A))^m ) - 1 - 11*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/9 ); A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (-1)^n * (x^n + 9*A(x))^n = 1 + 11*Sum_{n>=1} (-1)^n * x^(n^2).
(2) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 9*A(x))^(n-1) = 1 + 11*Sum_{n>=1} (-1)^n * x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 9*A(x))^n = 0.
(4) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 9*A(x)*x^n)^n = 1 + 11*Sum_{n>=1} (-1)^n * x^(n^2).
(5) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 9*A(x)*x^n)^(n+1) = 1 + 11*Sum_{n>=1} (-1)^n * x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / (1 + 9*A(x)*x^n)^(n+1) = 0.

A370040 Triangle of coefficients T(n,k) in g.f. A(x,y) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + y*A(x,y))^n = 1 + (y+2)*Sum_{n>=1} (-1)^n * x^(n^2), for n >= 1, as read by rows.

Original entry on oeis.org

1, 0, 1, 3, 0, 1, -1, 9, 0, 1, 9, -6, 18, 0, 1, -3, 54, -19, 30, 0, 1, 22, -54, 185, -44, 45, 0, 1, -9, 264, -294, 475, -85, 63, 0, 1, 52, -324, 1463, -1026, 1020, -146, 84, 0, 1, -22, 1127, -2715, 5531, -2781, 1939, -231, 108, 0, 1, 111, -1534, 9648, -13430, 16470, -6384, 3374, -344, 135, 0, 1, -51, 4338, -19005, 51853, -49032, 41567, -13020, 5490, -489, 165, 0, 1
Offset: 1

Views

Author

Paul D. Hanna, Feb 09 2024

Keywords

Comments

A370021(n) = Sum_{k=0..n-1} T(n,k), for n >= 1.
A370022(n) = Sum_{k=0..n-1} T(n,k) * 2^k, for n >= 1.
A370023(n) = Sum_{k=0..n-1} T(n,k) * 3^k, for n >= 1.
A370024(n) = Sum_{k=0..n-1} T(n,k) * 4^k, for n >= 1.
A370025(n) = Sum_{k=0..n-1} T(n,k) * 5^k, for n >= 1.
A370026(n) = Sum_{k=0..n-1} T(n,k) * 6^k, for n >= 1.
A370027(n) = Sum_{k=0..n-1} T(n,k) * 7^k, for n >= 1.
A370028(n) = Sum_{k=0..n-1} T(n,k) * 8^k, for n >= 1.
A370029(n) = Sum_{k=0..n-1} T(n,k) * 9^k, for n >= 1.
A370042(n) = Sum_{k=0..n-1} T(n,k) * 10^k, for n >= 1.

Examples

			G.f.: A(x,y) = x*(1) + x^2*(0 + y) + x^3*(3 + y^2) + x^4*(-1 + 9*y + y^3) + x^5*(9 - 6*y + 18*y^2 + y^4) + x^6*(-3 + 54*y - 19*y^2 + 30*y^3 + y^5) + x^7*(22 - 54*y + 185*y^2 - 44*y^3 + 45*y^4 + y^6) + x^8*(-9 + 264*y - 294*y^2 + 475*y^3 - 85*y^4 + 63*y^5 + y^7) + x^9*(52 - 324*y + 1463*y^2 - 1026*y^3 + 1020*y^4 - 146*y^5 + 84*y^6 + y^8) + x^10*(-22 + 1127*y - 2715*y^2 + 5531*y^3 - 2781*y^4 + 1939*y^5 - 231*y^6 + 108*y^7 + y^9) + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + y*A(x,y))^n = 1 + (y+2)*Sum_{n>=1} (-1)^n * x^(n^2).
TRIANGLE.
This triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) begins
1;
0, 1;
3, 0, 1;
-1, 9, 0, 1;
9, -6, 18, 0, 1;
-3, 54, -19, 30, 0, 1;
22, -54, 185, -44, 45, 0, 1;
-9, 264, -294, 475, -85, 63, 0, 1;
52, -324, 1463, -1026, 1020, -146, 84, 0, 1;
-22, 1127, -2715, 5531, -2781, 1939, -231, 108, 0, 1;
111, -1534, 9648, -13430, 16470, -6384, 3374, -344, 135, 0, 1;
-51, 4338, -19005, 51853, -49032, 41567, -13020, 5490, -489, 165, 0, 1;
230, -6274, 55413, -128974, 208178, -146098, 92869, -24300, 8475, -670, 198, 0, 1; ...
		

Crossrefs

Cf. A370150 (column 0), A370151 (column 1), A370152 (column 2).
Cf. A370041 (dual triangle).

Programs

  • PARI
    /* Generate A(x,y) by use of definition in name */
    {T(n,k) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + y*Ser(A))^m ) - 1 - (y+2)*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/y ); H=A; polcoeff(A[n+1],k,y)}
    for(n=1,15, for(k=0,n-1, print1(T(n,k),", "));print(""))
    
  • PARI
    /* Generate A(x,y) recursively using integration wrt y */
    {T(n,k) = my(A = x +x*O(x^n), M=sqrtint(n+1), Q = sum(m=1,M, (-1)^m * x^(m^2)) +x*O(x^n));
    for(i=0,n, A = (1/y) * intformal( Q / sum(m=-M,n, (-1)^m * m * (x^m + y*A)^(m-1)), y) +x*O(x^n));
    polcoeff(polcoeff(A,n,x),k,y)}
    for(n=1,15, for(k=0,n-1, print1(T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=1} Sum_{k=0..n-1} T(n,k) * x^n*y^k satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (-1)^n * (x^n + y*A(x,y))^n = 1 + (y+2)*Sum_{n>=1} (-1)^n * x^(n^2).
(2) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + y*A(x,y))^(n-1) = 1 + (y+2)*Sum_{n>=1} (-1)^n * x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + y*A(x,y))^n = 0.
(4) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + y*A(x,y)*x^n)^n = 1 + (y+2)*Sum_{n>=1} (-1)^n * x^(n^2).
(5) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + y*A(x,y)*x^n)^(n+1) = 1 + (y+2)*Sum_{n>=1} (-1)^n * x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / (1 + y*A(x,y)*x^n)^(n+1) = 0.
(7) A(x,y) = (1/y) * Integral Q(x) / Sum_{n=-oo..+oo} (-1)^n * n * (x^n + y*A(x,y))^(n-1) dy, where Q(x) = Sum_{n>=1} (-1)^n * x^(n^2).
(8) A(x,y=0) = (1 - theta_4(x))/2 / Product_{n>=1} (1 - x^(2*n))^3, which is the g.f. of column 0 (A370150) defined at y = 0.
Showing 1-9 of 9 results.