Original entry on oeis.org
1, 0, 9, -6, 54, -54, 264, -324, 1127, -1534, 4338, -6274, 15372, -22986, 50846, -77448, 158599, -243696, 470206, -724576, 1333275, -2052498, 3634077, -5575498, 9561408, -14596950, 24368133, -36983308, 60336459, -90983536, 145510968, -217948138, 342546543, -509567136, 788639494
Offset: 2
Original entry on oeis.org
1, 0, 18, -19, 185, -294, 1463, -2715, 9648, -19005, 55413, -111069, 284560, -568913, 1331790, -2630648, 5761619, -11195907, 23296840, -44461191, 88813155, -166422196, 321471340, -591712017, 1111195198, -2010602744, 3685487712, -6561391792, 11775930023, -20647946256, 36371943075
Offset: 3
A370041
Triangle of coefficients T(n,k) in g.f. A(x,y) satisfying Sum_{n=-oo..+oo} (x^n - y*A(x,y))^n = 1 - (y-2)*Sum_{n>=1} x^(n^2), for n >= 1, as read by rows.
Original entry on oeis.org
1, 0, 1, -1, 0, 1, 1, -3, 0, 1, 1, 6, -6, 0, 1, -1, 6, 19, -10, 0, 1, -2, -18, 17, 44, -15, 0, 1, 1, -4, -98, 35, 85, -21, 0, 1, 4, 36, 39, -334, 60, 146, -28, 0, 1, -2, 11, 291, 311, -879, 91, 231, -36, 0, 1, -5, -74, -264, 1310, 1286, -1960, 126, 344, -45, 0, 1, 3, -30, -627, -2547, 4248, 3935, -3892, 162, 489, -55, 0, 1
Offset: 1
G.f.: A(x,y) = x*(1) + x^2*(0 + y) + x^3*(-1 + y^2) + x^4*(1 - 3*y + y^3) + x^5*(1 + 6*y - 6*y^2 + y^4) + x^6*(-1 + 6*y + 19*y^2 - 10*y^3 + y^5) + x^7*(-2 - 18*y + 17*y^2 + 44*y^3 - 15*y^4 + y^6) + x^8*(1 - 4*y - 98*y^2 + 35*y^3 + 85*y^4 - 21*y^5 + y^7) + x^9*(4 + 36*y + 39*y^2 - 334*y^3 + 60*y^4 + 146*y^5 - 28*y^6 + y^8) + x^10*(-2 + 11*y + 291*y^2 + 311*y^3 - 879*y^4 + 91*y^5 + 231*y^6 - 36*y^7 + y^9) + ...
where
Sum_{n=-oo..+oo} (x^n - y*A(x,y))^n = 1 - (y-2)*Sum_{n>=1} x^(n^2).
TRIANGLE.
This triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) begins
1;
0, 1;
-1, 0, 1;
1, -3, 0, 1;
1, 6, -6, 0, 1;
-1, 6, 19, -10, 0, 1;
-2, -18, 17, 44, -15, 0, 1;
1, -4, -98, 35, 85, -21, 0, 1;
4, 36, 39, -334, 60, 146, -28, 0, 1;
-2, 11, 291, 311, -879, 91, 231, -36, 0, 1;
-5, -74, -264, 1310, 1286, -1960, 126, 344, -45, 0, 1;
3, -30, -627, -2547, 4248, 3935, -3892, 162, 489, -55, 0, 1;
6, 178, 773, -2626, -12982, 11138, 9989, -7092, 195, 670, -66, 0, 1;
-4, 40, 1525, 10094, -5842, -48126, 25138, 22258, -12093, 220, 891, -78, 0, 1;
...
Cf.
A370030,
A370031,
A355868,
A370033,
A370034,
A370035,
A370036,
A370037,
A370038,
A370039,
A370043.
-
/* Generate A(x, y) by use of definition in name */
{T(n,k) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-sqrtint(#A+1),#A, (x^m - y*Ser(A))^m ) - 1 + (y-2)*sum(m=1,sqrtint(#A+1), x^(m^2) ), #A-1)/y ); polcoeff(A[n+1],k,y)}
for(n=1,15, for(k=0,n-1, print1(T(n,k),", "));print(""))
-
/* Generate A(x, y) recursively using integration wrt y */
{T(n, k) = my(A = x +x*O(x^n), M=sqrtint(n+1), Q = sum(m=1, M, x^(m^2)) +x*O(x^n));
for(i=0, n, A = (1/y) * intformal( Q / sum(m=-M, n, m * (x^m - y*A)^(m-1)), y) +x*O(x^n));
polcoeff(polcoeff(A, n, x), k, y)}
for(n=1, 15, for(k=0, n-1, print1(T(n, k), ", ")); print(""))
A370020
Table in which the g.f. of row n, R(n,x), satisfies Sum_{k=-oo..+oo} (-1)^k * (x^k + n*R(n,x))^k = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2), for n >= 1, as read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 1, 3, 7, 9, 1, 4, 12, 25, 22, 1, 5, 19, 53, 85, 63, 1, 6, 28, 99, 234, 301, 155, 1, 7, 39, 169, 529, 1041, 1086, 415, 1, 8, 52, 269, 1054, 2853, 4711, 3927, 1124, 1, 9, 67, 405, 1917, 6667, 15566, 21573, 14328, 2957, 1, 10, 84, 583, 3250, 13893, 42627, 85879, 99484, 52724, 8047, 1, 11, 103, 809, 5209, 26541, 101830, 275211, 477716, 461657, 194915, 21817
Offset: 1
This table of coefficients T(n,k) of x^k in R(n,x), n >= 1, k >= 1, begins:
A370021: [1, 1, 4, 9, 22, 63, 155, 415, ...];
A370022: [1, 2, 7, 25, 85, 301, 1086, 3927, ...];
A370023: [1, 3, 12, 53, 234, 1041, 4711, 21573, ...];
A370024: [1, 4, 19, 99, 529, 2853, 15566, 85879, ...];
A370025: [1, 5, 28, 169, 1054, 6667, 42627, 275211, ...];
A370026: [1, 6, 39, 269, 1917, 13893, 101830, 753255, ...];
A370027: [1, 7, 52, 405, 3250, 26541, 219311, 1828657, ...];
A370028: [1, 8, 67, 583, 5209, 47341, 435366, 4039863, ...];
A370029: [1, 9, 84, 809, 7974, 79863, 809131, 8270199, ...];
A370042: [1, 10, 103, 1089, 11749, 128637, 1423982, 15898231, ...];
...
where the n-th row function R(n,x) satisfies
Sum_{k=-oo..+oo} (-1)^k * (x^k + n*R(n,x))^k = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2).
-
{T(n,k) = my(A=[0,1]); for(i=0,k, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + n*Ser(A))^m ) - 1 - (n+2)*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/n ); A[k+1]}
for(n=1,12, for(k=1,10, print1(T(n,k),", "));print(""))
A370150
Expansion of g.f. (1 - theta_4(x))/2 / Product_{n>=1} (1 - x^(2*n))^3.
Original entry on oeis.org
1, 0, 3, -1, 9, -3, 22, -9, 52, -22, 111, -51, 230, -108, 451, -222, 861, -432, 1587, -819, 2861, -1501, 5028, -2691, 8679, -4707, 14691, -8089, 24492, -13638, 40202, -22653, 65141, -37060, 104199, -59863, 164833, -95484, 257920, -150646, 399681, -235141, 613557, -363543, 933869
Offset: 1
G.f.: A(x) = x + 3*x^3 - x^4 + 9*x^5 - 3*x^6 + 22*x^7 - 9*x^8 + 52*x^9 - 22*x^10 + 111*x^11 - 51*x^12 + 230*x^13 - 108*x^14 + 451*x^15 - 222*x^16 + ...
which equals A(x) = P(x) / Q(x)
where
P(x) = x - x^4 + x^9 - x^16 + x^25 - x^36 + x^49 + ...
Q(x) = 1 - 3*x^2 + 5*x^6 - 7*x^12 + 9*x^20 - 11*x^30 + 13*x^42 + ...
-
{a(n) = my(P = sum(m=1,sqrtint(n+1), (-1)^(m-1) * x^(m^2) +x*O(x^n)),
Q = sum(m=0,sqrtint(n+1), (-1)^m * (2*m+1) * x^(m*(m+1)) +x*O(x^n)));
polcoeff(P/Q,n)}
for(n=1,50,print1(a(n),", "))
Showing 1-5 of 5 results.
Comments