cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A370040 Triangle of coefficients T(n,k) in g.f. A(x,y) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + y*A(x,y))^n = 1 + (y+2)*Sum_{n>=1} (-1)^n * x^(n^2), for n >= 1, as read by rows.

Original entry on oeis.org

1, 0, 1, 3, 0, 1, -1, 9, 0, 1, 9, -6, 18, 0, 1, -3, 54, -19, 30, 0, 1, 22, -54, 185, -44, 45, 0, 1, -9, 264, -294, 475, -85, 63, 0, 1, 52, -324, 1463, -1026, 1020, -146, 84, 0, 1, -22, 1127, -2715, 5531, -2781, 1939, -231, 108, 0, 1, 111, -1534, 9648, -13430, 16470, -6384, 3374, -344, 135, 0, 1, -51, 4338, -19005, 51853, -49032, 41567, -13020, 5490, -489, 165, 0, 1
Offset: 1

Views

Author

Paul D. Hanna, Feb 09 2024

Keywords

Comments

A370021(n) = Sum_{k=0..n-1} T(n,k), for n >= 1.
A370022(n) = Sum_{k=0..n-1} T(n,k) * 2^k, for n >= 1.
A370023(n) = Sum_{k=0..n-1} T(n,k) * 3^k, for n >= 1.
A370024(n) = Sum_{k=0..n-1} T(n,k) * 4^k, for n >= 1.
A370025(n) = Sum_{k=0..n-1} T(n,k) * 5^k, for n >= 1.
A370026(n) = Sum_{k=0..n-1} T(n,k) * 6^k, for n >= 1.
A370027(n) = Sum_{k=0..n-1} T(n,k) * 7^k, for n >= 1.
A370028(n) = Sum_{k=0..n-1} T(n,k) * 8^k, for n >= 1.
A370029(n) = Sum_{k=0..n-1} T(n,k) * 9^k, for n >= 1.
A370042(n) = Sum_{k=0..n-1} T(n,k) * 10^k, for n >= 1.

Examples

			G.f.: A(x,y) = x*(1) + x^2*(0 + y) + x^3*(3 + y^2) + x^4*(-1 + 9*y + y^3) + x^5*(9 - 6*y + 18*y^2 + y^4) + x^6*(-3 + 54*y - 19*y^2 + 30*y^3 + y^5) + x^7*(22 - 54*y + 185*y^2 - 44*y^3 + 45*y^4 + y^6) + x^8*(-9 + 264*y - 294*y^2 + 475*y^3 - 85*y^4 + 63*y^5 + y^7) + x^9*(52 - 324*y + 1463*y^2 - 1026*y^3 + 1020*y^4 - 146*y^5 + 84*y^6 + y^8) + x^10*(-22 + 1127*y - 2715*y^2 + 5531*y^3 - 2781*y^4 + 1939*y^5 - 231*y^6 + 108*y^7 + y^9) + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + y*A(x,y))^n = 1 + (y+2)*Sum_{n>=1} (-1)^n * x^(n^2).
TRIANGLE.
This triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) begins
1;
0, 1;
3, 0, 1;
-1, 9, 0, 1;
9, -6, 18, 0, 1;
-3, 54, -19, 30, 0, 1;
22, -54, 185, -44, 45, 0, 1;
-9, 264, -294, 475, -85, 63, 0, 1;
52, -324, 1463, -1026, 1020, -146, 84, 0, 1;
-22, 1127, -2715, 5531, -2781, 1939, -231, 108, 0, 1;
111, -1534, 9648, -13430, 16470, -6384, 3374, -344, 135, 0, 1;
-51, 4338, -19005, 51853, -49032, 41567, -13020, 5490, -489, 165, 0, 1;
230, -6274, 55413, -128974, 208178, -146098, 92869, -24300, 8475, -670, 198, 0, 1; ...
		

Crossrefs

Cf. A370150 (column 0), A370151 (column 1), A370152 (column 2).
Cf. A370041 (dual triangle).

Programs

  • PARI
    /* Generate A(x,y) by use of definition in name */
    {T(n,k) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + y*Ser(A))^m ) - 1 - (y+2)*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/y ); H=A; polcoeff(A[n+1],k,y)}
    for(n=1,15, for(k=0,n-1, print1(T(n,k),", "));print(""))
    
  • PARI
    /* Generate A(x,y) recursively using integration wrt y */
    {T(n,k) = my(A = x +x*O(x^n), M=sqrtint(n+1), Q = sum(m=1,M, (-1)^m * x^(m^2)) +x*O(x^n));
    for(i=0,n, A = (1/y) * intformal( Q / sum(m=-M,n, (-1)^m * m * (x^m + y*A)^(m-1)), y) +x*O(x^n));
    polcoeff(polcoeff(A,n,x),k,y)}
    for(n=1,15, for(k=0,n-1, print1(T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=1} Sum_{k=0..n-1} T(n,k) * x^n*y^k satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (-1)^n * (x^n + y*A(x,y))^n = 1 + (y+2)*Sum_{n>=1} (-1)^n * x^(n^2).
(2) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + y*A(x,y))^(n-1) = 1 + (y+2)*Sum_{n>=1} (-1)^n * x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + y*A(x,y))^n = 0.
(4) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + y*A(x,y)*x^n)^n = 1 + (y+2)*Sum_{n>=1} (-1)^n * x^(n^2).
(5) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + y*A(x,y)*x^n)^(n+1) = 1 + (y+2)*Sum_{n>=1} (-1)^n * x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / (1 + y*A(x,y)*x^n)^(n+1) = 0.
(7) A(x,y) = (1/y) * Integral Q(x) / Sum_{n=-oo..+oo} (-1)^n * n * (x^n + y*A(x,y))^(n-1) dy, where Q(x) = Sum_{n>=1} (-1)^n * x^(n^2).
(8) A(x,y=0) = (1 - theta_4(x))/2 / Product_{n>=1} (1 - x^(2*n))^3, which is the g.f. of column 0 (A370150) defined at y = 0.

A370150 Expansion of g.f. (1 - theta_4(x))/2 / Product_{n>=1} (1 - x^(2*n))^3.

Original entry on oeis.org

1, 0, 3, -1, 9, -3, 22, -9, 52, -22, 111, -51, 230, -108, 451, -222, 861, -432, 1587, -819, 2861, -1501, 5028, -2691, 8679, -4707, 14691, -8089, 24492, -13638, 40202, -22653, 65141, -37060, 104199, -59863, 164833, -95484, 257920, -150646, 399681, -235141, 613557, -363543, 933869
Offset: 1

Views

Author

Paul D. Hanna, Feb 10 2024

Keywords

Comments

Column 0 of triangle A370040. The g.f. of triangle A370040, F(x,y), satisfies Sum_{n=-oo..+oo} (-1)^n * (x^n + y*F(x,y))^n = 1 + (y+2)*Sum_{n>=1} (-1)^n * x^(n^2). The g.f. of this sequence is F(x,y) at y = 0.

Examples

			G.f.: A(x) = x + 3*x^3 - x^4 + 9*x^5 - 3*x^6 + 22*x^7 - 9*x^8 + 52*x^9 - 22*x^10 + 111*x^11 - 51*x^12 + 230*x^13 - 108*x^14 + 451*x^15 - 222*x^16 + ...
which equals A(x) = P(x) / Q(x)
where
P(x) = x - x^4 + x^9 - x^16 + x^25 - x^36 + x^49 + ...
Q(x) = 1 - 3*x^2 + 5*x^6 - 7*x^12 + 9*x^20 - 11*x^30 + 13*x^42 + ...
		

Crossrefs

Cf. A370153 (dual).

Programs

  • PARI
    {a(n) = my(P = sum(m=1,sqrtint(n+1), (-1)^(m-1) * x^(m^2) +x*O(x^n)),
    Q = sum(m=0,sqrtint(n+1), (-1)^m * (2*m+1) * x^(m*(m+1)) +x*O(x^n)));
    polcoeff(P/Q,n)}
    for(n=1,50,print1(a(n),", "))

Formula

a(n) = A370040(n,0) for n >= 1.
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = (1 - theta_4(x))/2 / Product_{n>=1} (1 - x^(2*n))^3.
(2) A(x) = P(x)/Q(x) where P(x) = Sum_{n>=1} (-1)^(n-1) * x^(n^2) and Q(x) = Sum_{n>=0} (-1)^n * (2*n+1) * x^(n*(n+1)).
(3) A(x) = F(x,0) where F(x,y) is the g.f. of triangle A370040 (see comment).

A370152 Column 2 of triangle A370040.

Original entry on oeis.org

1, 0, 18, -19, 185, -294, 1463, -2715, 9648, -19005, 55413, -111069, 284560, -568913, 1331790, -2630648, 5761619, -11195907, 23296840, -44461191, 88813155, -166422196, 321471340, -591712017, 1111195198, -2010602744, 3685487712, -6561391792, 11775930023, -20647946256, 36371943075
Offset: 3

Views

Author

Paul D. Hanna, Feb 10 2024

Keywords

Comments

The g.f. of triangle A370040, F(x,y), satisfies Sum_{n=-oo..+oo} (-1)^n * (x^n + y*F(x,y))^n = 1 + (y+2)*Sum_{n>=1} (-1)^n * x^(n^2).

Crossrefs

Formula

a(n) = A370040(n,2) for n >= 3.
Showing 1-3 of 3 results.