cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A370154 Column 1 of triangle A370041.

Original entry on oeis.org

1, 0, -3, 6, 6, -18, -4, 36, 11, -74, -30, 178, 40, -366, -42, 680, 79, -1264, -110, 2320, 75, -4070, -7, 6938, -96, -11650, 413, 19276, -1157, -31296, 2492, 49898, -4669, -78576, 8446, 122458, -15073, -188430, 25744, 286508, -42200, -431650, 68180, 644748, -108998, -954360, 170817
Offset: 2

Views

Author

Paul D. Hanna, Feb 10 2024

Keywords

Comments

The g.f. of triangle A370041, G(x,y), satisfies Sum_{n=-oo..+oo} (x^n - y*G(x,y))^n = 1 - (y-2)*Sum_{n>=1} x^(n^2).

Crossrefs

Formula

a(n) = A370041(n,1) for n >= 2.

A370155 Column 2 of triangle A370041.

Original entry on oeis.org

1, 0, -6, 19, 17, -98, 39, 291, -264, -627, 773, 1525, -2000, -3895, 5606, 8784, -14325, -18125, 32856, 37727, -72557, -77316, 157044, 150945, -326602, -286320, 655760, 536800, -1287225, -986584, 2474251, 1770786, -4650780, -3122412, 8570426, 5430403, -15530336, -9307817, 27707720
Offset: 3

Views

Author

Paul D. Hanna, Feb 10 2024

Keywords

Comments

The g.f. of triangle A370041, G(x,y), satisfies Sum_{n=-oo..+oo} (x^n - y*G(x,y))^n = 1 - (y-2)*Sum_{n>=1} x^(n^2).

Crossrefs

Formula

a(n) = A370041(n,2) for n >= 3.

A355868 G.f. A(x) satisfies: 1 = Sum_{n=-oo..+oo} (x^n - 2*x*A(x))^n.

Original entry on oeis.org

1, 2, 3, 3, 5, 39, 206, 697, 1656, 3208, 8727, 41667, 192142, 688944, 1965643, 5117374, 15888133, 63924038, 263759291, 955198539, 3017571957, 9101208987, 30075674452, 113177783141, 437460265979, 1583161667787, 5299622270275, 17294182815347, 59169678008804
Offset: 0

Views

Author

Paul D. Hanna, Aug 09 2022

Keywords

Comments

Related identity: Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + y)^n = 0 for all y.
Related identity: Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*x^n)^n = 0 for all y.

Examples

			G.f.: A(x) = 1 + 2*x + 3*x^2 + 3*x^3 + 5*x^4 + 39*x^5 + 206*x^6 + 697*x^7 + 1656*x^8 + 3208*x^9 + 8727*x^10 + 41667*x^11 + 192142*x^12 + ...
where
1 = ... + (x^(-3) - 2*x*A(x))^(-3) + (x^(-2) - 2*x*A(x))^(-2) + (x^(-1) - 2*x*A(x))^(-1) + 1 + (x - 2*x*A(x)) + (x^2 - 2*x*A(x))^2 + (x^3 - 2*x*A(x))^3 + ... + (x^n - 2*x*A(x))^n + ...
and
1 = ... + x^(-5)/(x^(-3) + 2*A(x))^3 + x^(-3)/(x^(-2) + 2*A(x))^2 + x^(-1)/(x^(-1) + 2*A(x)) + x + x^3*(x + 2*A(x)) + x^5*(x^2 + 2*A(x))^2 + x^7*(x^3 + 2*A(x))^3 + ... + x^(2*n+1)*(x^n + 2*A(x))^n + ...
also,
1 = ... + x^9*(1 - 2*A(x)/x^2)^3 + x^4*(1 - 2*A(x)/x)^2 + x*(1 - 2*A(x)) + 1 + x/(1 - 2*A(x)*x^2) + x^4/(1 - 2*A(x)*x^3)^2 + x^9/(1 - 2*A(x)*x^4)^3 + ... + x^(n^2)/(1 - 2*A(x)*x^(n+1))^n + ...
further,
1 = ... + x^9*(1 + 2*A(x)/x^2)^2 + x^4*(1 + 2*A(x)/x) + x + 1/(1 + 2*A(x)*x) + x/(1 + 2*A(x)*x^2)^2 + x^4/(1 - 2*A(x)*x^3)^3 + x^9/(1 - 2*A(x)*x^4)^4 + ... + x^(n^2)/(1 + 2*A(x)*x^(n+1))^(n+1) + ...
SPECIFIC VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.04720243920412572796492634515550526365563452970121157309...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - 2*A)^n = 1.
(V.2) Let A = A(exp(-2*Pi)) = 0.001874436990256710694689538031391789940066981740061145959...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 2*A)^n = 1.
(V.3) Let A = A(-exp(-Pi)) = -0.03971121915244100584186154683625533541823516978831008865...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - 2*A)^n = 1.
(V.4) Let A = A(-exp(-2*Pi)) = -0.001860487547859226152163099117755736250804492732905479139...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - 2*A)^n = 1.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (x^m - 2*x*Ser(A))^m ), #A)/2);A[n+1]}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, x^(2*m+1) * (x^m + 2*Ser(A))^m  ), #A)/2);A[n+1]}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, x^(m^2)/(1 - 2*Ser(A)*x^(m+1))^m ), #A)/2);A[n+1]}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, x^(m^2)/(1 + 2*Ser(A)*x^(m+1))^(m+1) ), #A)/2);A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) 1 = Sum_{n=-oo..+oo} (x^n - 2*x*A(x))^n.
(2) 1 = Sum_{n=-oo..+oo} x^(2*n+1) * (x^n + 2*A(x))^n.
(3) 0 = Sum_{n=-oo..+oo} (-1)^n * (x^n - 2*x*A(x))^(n-1).
(4) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n+1) * (x^n + 2*x*A(x))^(n+1).
(5) 1 = Sum_{n=-oo..+oo} x^(n^2) / (1 - 2*A(x)*x^(n+1))^n.
(6) 1 = Sum_{n=-oo..+oo} x^(n^2) / (1 + 2*A(x)*x^(n+1))^(n+1).
(7) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 2*A(x)*x^n)^n.
a(n) ~ c * d^n / n^(3/2), where d = 3.70839... and c = 1.176... - Vaclav Kotesovec, Feb 18 2024

A370030 Table in which the g.f. of row n, R(n,x), satisfies Sum_{k=-oo..+oo} (x^k - n*R(n,x))^k = 1 - (n-2)*Sum_{k>=1} x^(k^2), for n >= 1, as read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 3, -1, 1, 4, 8, 3, 2, 1, 5, 15, 19, 5, 15, 1, 6, 24, 53, 46, 39, 27, 1, 7, 35, 111, 185, 161, 206, -1, 1, 8, 48, 199, 506, 711, 799, 697, -76, 1, 9, 63, 323, 1117, 2379, 3270, 4021, 1656, 19, 1, 10, 80, 489, 2150, 6335, 12083, 17297, 17932, 3208, 719, 1, 11, 99, 703, 3761, 14349, 37222, 67531, 95108, 71311, 8727, 1687
Offset: 1

Views

Author

Paul D. Hanna, Feb 10 2024

Keywords

Comments

A related function is theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).

Examples

			This table of coefficients T(n,k) of x^k in R(n,x), n >= 1, k >= 1, begins:
A370031: [1,  1,  0,  -1,    2,    15,     27,      -1,      -76, ...];
A355868: [1,  2,  3,   3,    5,    39,    206,     697,     1656, ...];
A370033: [1,  3,  8,  19,   46,   161,    799,    4021,    17932, ...];
A370034: [1,  4, 15,  53,  185,   711,   3270,   17297,    95108, ...];
A370035: [1,  5, 24, 111,  506,  2379,  12083,   67531,   406284, ...];
A370036: [1,  6, 35, 199, 1117,  6335,  37222,  230809,  1515784, ...];
A370037: [1,  7, 48, 323, 2150, 14349,  97431,  681857,  4956116, ...];
A370038: [1,  8, 63, 489, 3761, 28911, 224174, 1768801, 14298852, ...];
A370039: [1,  9, 80, 703, 6130, 53351, 466315, 4118167, 36941188, ...];
A370043: [1, 10, 99, 971, 9461, 91959, 895518, 8775161, 86870264, ...]; ...
...
where the n-th row function R(n,x) satisfies
Sum_{k=-oo..+oo} (x^k - n*R(n,x))^k = 1 - (n-2)*Sum_{k>=1} x^(k^2).
		

Crossrefs

Programs

  • PARI
    {T(n,k) = my(A=[0,1]); for(i=0,k, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-sqrtint(#A+1),#A, (x^m - n*Ser(A))^m ) - 1 + (n-2)*sum(m=1,sqrtint(#A+1), x^(m^2) ), #A-1)/n ); A[k+1]}
    for(n=1,12, for(k=1,10, print1(T(n,k),", "));print(""))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{k=-oo..+oo} (x^k - n*R(n,x))^k = 1 - (n-2)*Sum_{k>=1} x^(k^2).
(2) Sum_{k=-oo..+oo} x^k * (x^k + n*R(n,x))^(k-1) = 1 - (n-2)*Sum_{k>=1} x^(k^2).
(3) Sum_{k=-oo..+oo} (-1)^k * x^k * (x^k - n*R(n,x))^k = 0.
(4) Sum_{k=-oo..+oo} x^(k^2) / (1 - n*R(n,x)*x^k)^k = 1 - (n-2)*Sum_{k>=1} x^(k^2).
(5) Sum_{k=-oo..+oo} x^(k^2) / (1 + n*R(n,x)*x^k)^(k+1) = 1 - (n-2)*Sum_{k>=1} x^(k^2).
(6) Sum_{k=-oo..+oo} (-1)^k * x^(k*(k-1)) / (1 - n*R(n,x)*x^k)^k = 0.

A370031 Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (x^n - A(x))^n = Sum_{n>=0} x^(n^2).

Original entry on oeis.org

1, 1, 0, -1, 2, 15, 27, -1, -76, 19, 719, 1687, 184, -5976, -3749, 44093, 130933, 42026, -512833, -667101, 2976177, 11391169, 6608432, -45604863, -87819235, 202544340, 1053407806, 922859161, -4085924365, -10600384406, 12656739909, 100646660458, 121472828448, -360976456530
Offset: 1

Views

Author

Paul D. Hanna, Feb 10 2024

Keywords

Comments

A related function is theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).

Examples

			G.f.: A(x) = 1 + x - x^3 + 2*x^4 + 15*x^5 + 27*x^6 - x^7 - 76*x^8 + 19*x^9 + 719*x^10 + 1687*x^11 + 184*x^12 - 5976*x^13 - 3749*x^14 + 44093*x^15 + ...
where
Sum_{n=-oo..+oo} (x^n - A(x))^n = 1 + x + x^4 + x^9 + x^16 + x^25 + x^36 + x^49 + ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.04507828029039130528308497098432879536368681539259286273...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - A)^n = (1 + Pi^(1/4)/gamma(3/4))/2 = 1.0432174056066540...
(V.2) Let A = A(exp(-2*Pi)) = 0.001870930061948701432816606547007172908053584772650237678...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - A)^n = (1 + sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4))/2 = 1.00186744274386954...
(V.3) Let A = A(-exp(-Pi)) = -0.04135017416264159536574596265267969182735801577042441264...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - A)^n = (1 + (Pi/2)^(1/4)/gamma(3/4))/2 = 0.9567895690780584107...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001863955401558124515592555303127910405358304631205735085...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - A)^n = (1 + 2^(1/8)*(Pi/2)^(1/4)/gamma(3/4))/2 = 0.99813255728045356...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( sum(n=-#A,#A, (x^n - Ser(A))^n ) - sum(n=0,#A, x^(n^2) ), #A-1) ); A[n+1]}
    for(n=1,40, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (x^n - A(x))^n = Sum_{n>=0} x^(n^2).
(2) Sum_{n=-oo..+oo} x^n * (x^n + A(x))^(n-1) = Sum_{n>=0} x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n - A(x))^n = 0.
(4) Sum_{n=-oo..+oo} x^(n^2) / (1 - x^n*A(x))^n = Sum_{n>=0} x^(n^2).
(5) Sum_{n=-oo..+oo} x^(n^2) / (1 + x^n*A(x))^(n+1) = Sum_{n>=0} x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 - x^n*A(x))^n = 0.

A370033 Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (x^n - 3*A(x))^n = 1 - Sum_{n>=1} x^(n^2).

Original entry on oeis.org

1, 3, 8, 19, 46, 161, 799, 4021, 17932, 71311, 268639, 1045731, 4464576, 20500010, 95221503, 429913365, 1879365529, 8112744634, 35452835755, 158833086233, 725458442577, 3329609464605, 15194309369384, 68837584452055, 311257278509193, 1413730859134250, 6469321177004978
Offset: 1

Views

Author

Paul D. Hanna, Feb 10 2024

Keywords

Comments

A related function is theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).

Examples

			G.f.: A(x) = 1 + 3*x + 8*x^2 + 19*x^3 + 46*x^4 + 161*x^5 + 799*x^6 + 4021*x^7 + 17932*x^8 + 71311*x^9 + 268639*x^10 + 1045731*x^11 + 4464576*x^12 + ...
where
Sum_{n=-oo..+oo} (x^n - 3*A(x))^n = 1 - x - x^4 - x^9 - x^16 - x^25 - x^36 - x^49 - ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.04953636800560980886288845724196786482586224709976648461...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - 3*A)^n = (3 - Pi^(1/4)/gamma(3/4))/2 = 0.956782594393345992...
(V.2) Let A = A(exp(-2*Pi)) = 0.001877957090194880545086201853719041435355287864597005509...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 3*A)^n = (3 - sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4))/2 = 0.998132557256130454...
(V.3) Let A = A(-exp(-Pi)) = -0.03819699447470815952471171970837842342724818247967540335...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - 3*A)^n = (3 - (Pi/2)^(1/4)/gamma(3/4))/2 = 1.0432104309219415...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001857032573904813918259314464039219802478066024973444789...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - 3*A)^n = (3 - 2^(1/8)*(Pi/2)^(1/4)/gamma(3/4))/2 = 1.001867442719546432...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (x^m - 3*Ser(A))^m ) - 1 + sum(m=1,#A, x^(m^2) ), #A-1)/3 ); A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (x^n - 3*A(x))^n = 1 - Sum_{n>=1} x^(n^2).
(2) Sum_{n=-oo..+oo} x^n * (x^n + 3*A(x))^(n-1) = 1 - Sum_{n>=1} x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n - 3*A(x))^n = 0.
(4) Sum_{n=-oo..+oo} x^(n^2) / (1 - 3*x^n*A(x))^n = 1 - Sum_{n>=1} x^(n^2).
(5) Sum_{n=-oo..+oo} x^(n^2) / (1 + 3*x^n*A(x))^(n+1) = 1 - Sum_{n>=1} x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 - 3*x^n*A(x))^n = 0.

A370034 Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (x^n - 4*A(x))^n = 1 - 2*Sum_{n>=1} x^(n^2).

Original entry on oeis.org

1, 4, 15, 53, 185, 711, 3270, 17297, 95108, 511258, 2653139, 13479835, 68633758, 356913516, 1906525759, 10388550830, 57084621325, 313692565172, 1719365476703, 9416232699651, 51699722653269, 285294478988749, 1583233662850172, 8826549215612727, 49354550054780111, 276444281747417079
Offset: 1

Views

Author

Paul D. Hanna, Feb 10 2024

Keywords

Comments

A related function is theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).

Examples

			G.f.: A(x) = x + 4*x^2 + 15*x^3 + 53*x^4 + 185*x^5 + 711*x^6 + 3270*x^7 + 17297*x^8 + 95108*x^9 + 511258*x^10 + 2653139*x^11 + 13479835*x^12 + ...
where
Sum_{n=-oo..+oo} (x^n - 4*A(x))^n = 1 - 2*x - 2*x^4 - 2*x^9 - 2*x^16 - 2*x^25 - 2*x^36 - 2*x^49 - ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05211271680112049721451382589099198923178830298930738503...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - 4*A)^n = 2 - Pi^(1/4)/gamma(3/4) = 0.913565188786691985...
(V.2) Let A = A(exp(-2*Pi)) = 0.001881490436109324727231096204943046774873234177072692211...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 4*A)^n = 2 - sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) = 0.99626511451226...
(V.3) Let A = A(-exp(-Pi)) = -0.03679381086518350821622244996144281973183248006035375080...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - 4*A)^n = 2 - (Pi/2)^(1/4)/gamma(3/4) = 1.08642086184388317...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001853590408074327278987912837104527635895010708605840824...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - 4*A)^n = 2 - 2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) = 1.003734885439...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (x^m - 4*Ser(A))^m ) - 1 + 2*sum(m=1,#A, x^(m^2) ), #A-1)/4 ); A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (x^n - 4*A(x))^n = 1 - 2*Sum_{n>=1} x^(n^2).
(2) Sum_{n=-oo..+oo} x^n * (x^n + 4*A(x))^(n-1) = 1 - 2*Sum_{n>=1} x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n - 4*A(x))^n = 0.
(4) Sum_{n=-oo..+oo} x^(n^2) / (1 - 4*x^n*A(x))^n = 1 - 2*Sum_{n>=1} x^(n^2).
(5) Sum_{n=-oo..+oo} x^(n^2) / (1 + 4*x^n*A(x))^(n+1) = 1 - 2*Sum_{n>=1} x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 - 4*x^n*A(x))^n = 0.

A370035 Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (x^n - 5*A(x))^n = 1 - 3*Sum_{n>=1} x^(n^2).

Original entry on oeis.org

1, 5, 24, 111, 506, 2379, 12083, 67531, 406284, 2531203, 15866775, 98883303, 612775096, 3798083196, 23698615411, 149450139421, 953022469813, 6132672546362, 39706366904663, 258032916789711, 1680779512045521, 10970344718827785, 71764325720800072, 470691291168007709
Offset: 1

Views

Author

Paul D. Hanna, Feb 10 2024

Keywords

Comments

A related function is theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).

Examples

			G.f.: A(x) = x + 5*x^2 + 24*x^3 + 111*x^4 + 506*x^5 + 2379*x^6 + 12083*x^7 + 67531*x^8 + 406284*x^9 + 2531203*x^10 + 15866775*x^11 + 98883303*x^12 + ...
where
Sum_{n=-oo..+oo} (x^n - 5*A(x))^n = 1 - 3*x - 3*x^4 - 3*x^9 - 3*x^16 - 3*x^25 - 3*x^36 - 3*x^49 - ...
\SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05497127752043377386868704294930896868077597772598908285...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - 5*A)^n = (5 - 3*Pi^(1/4)/gamma(3/4) )/2 = 0.870347783180037978...
(V.2) Let A = A(exp(-2*Pi)) = 0.001885037102906729934432374294398706956703235597857256076...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 5*A)^n = (5 - 3*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4))/2 = 0.994397671768391...
(V.3) Let A = A(-exp(-Pi)) = -0.03548990756971248576955893224372969073755967165800772531...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - 5*A)^n = (5 - 3*(Pi/2)^(1/4)/gamma(3/4))/2 = 1.12963129276582476...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001850160979277236538611428135062916090397865766804127684...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - 5*A)^n = (5 - 3*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4))/2 = 1.005602328158639...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (x^m - 5*Ser(A))^m ) - 1 + 3*sum(m=1,#A, x^(m^2) ), #A-1)/5 ); A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (x^n - 5*A(x))^n = 1 - 3*Sum_{n>=1} x^(n^2).
(2) Sum_{n=-oo..+oo} x^n * (x^n + 5*A(x))^(n-1) = 1 - 3*Sum_{n>=1} x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n - 5*A(x))^n = 0.
(4) Sum_{n=-oo..+oo} x^(n^2) / (1 - 5*x^n*A(x))^n = 1 - 3*Sum_{n>=1} x^(n^2).
(5) Sum_{n=-oo..+oo} x^(n^2) / (1 + 5*x^n*A(x))^(n+1) = 1 - 3*Sum_{n>=1} x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 - 5*x^n*A(x))^n = 0.

A370036 Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (x^n - 6*A(x))^n = 1 - 4*Sum_{n>=1} x^(n^2).

Original entry on oeis.org

1, 6, 35, 199, 1117, 6335, 37222, 230809, 1515784, 10423684, 73758799, 529151547, 3815582934, 27567473744, 199625904531, 1451286365478, 10610026385893, 78068267016226, 578088243024187, 4304808678569939, 32204405165738517, 241805832191132439, 1820963567348143772
Offset: 1

Views

Author

Paul D. Hanna, Feb 10 2024

Keywords

Comments

A related function is theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).

Examples

			G.f.: A(x) = x + 6*x^2 + 35*x^3 + 199*x^4 + 1117*x^5 + 6335*x^6 + 37222*x^7 + 230809*x^8 + 1515784*x^9 + 10423684*x^10 + 73758799*x^11 + 529151547*x^12 + ...
where
Sum_{n=-oo..+oo} (x^n - 6*A(x))^n = 1 - 4*x - 4*x^4 - 4*x^9 - 4*x^16 - 4*x^25 - 4*x^36 - 4*x^49 - ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05816104948088020874729529058423242784366544822359858088...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - 6*A)^n = 3 - 2*Pi^(1/4)/gamma(3/4) = 0.82713037757338397...
(V.2) Let A = A(exp(-2*Pi)) = 0.001888597166059649200752082246148944967408910981759517793...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 6*A)^n = 3 - 2*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) = 0.9925302290245218...
(V.3) Let A = A(-exp(-Pi)) = -0.03427512499419794844050440831018295417511284891315471397...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - 6*A)^n = 3 - 2*(Pi/2)^(1/4)/gamma(3/4) = 1.172841723687766...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001846744216948148769402996728724142172026226548695349349...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - 6*A)^n = 3 - 2*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) = 1.007469770878185...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (x^m - 6*Ser(A))^m ) - 1 + 4*sum(m=1,#A, x^(m^2) ), #A-1)/6 ); A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (x^n - 6*A(x))^n = 1 - 4*Sum_{n>=1} x^(n^2).
(2) Sum_{n=-oo..+oo} x^n * (x^n + 6*A(x))^(n-1) = 1 - 4*Sum_{n>=1} x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n - 6*A(x))^n = 0.
(4) Sum_{n=-oo..+oo} x^(n^2) / (1 - 6*x^n*A(x))^n = 1 - 4*Sum_{n>=1} x^(n^2).
(5) Sum_{n=-oo..+oo} x^(n^2) / (1 + 6*x^n*A(x))^(n+1) = 1 - 4*Sum_{n>=1} x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 - 6*x^n*A(x))^n = 0.

A370037 Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (x^n - 7*A(x))^n = 1 - 5*Sum_{n>=1} x^(n^2).

Original entry on oeis.org

1, 7, 48, 323, 2150, 14349, 97431, 681857, 4956116, 37422943, 291763607, 2327820547, 18848767552, 153975563934, 1264733865463, 10431060837749, 86368123241833, 718121985169658, 5997857713743011, 50325664101701349, 424138198629299217, 3589151537280637957, 30481898682409007792
Offset: 1

Views

Author

Paul D. Hanna, Feb 10 2024

Keywords

Comments

A related function is theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).

Examples

			G.f.: A(x) = x + 7*x^2 + 48*x^3 + 323*x^4 + 2150*x^5 + 14349*x^6 + 97431*x^7 + 681857*x^8 + 4956116*x^9 + 37422943*x^10 + 291763607*x^11 + ...
where
Sum_{n=-oo..+oo} (x^n - 7*A(x))^n = 1 - 5*x - 5*x^4 - 5*x^9 - 5*x^16 - 5*x^25 - 5*x^36 - 5*x^49 - ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.06174306640715063509845961016774795661670689719654375131...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - 7*A)^n = (7 - 5*Pi^(1/4)/gamma(3/4))/2 = 0.78391297196672996...
(V.2) Let A = A(exp(-2*Pi)) = 0.001892170701611855386420113452656768397809538392272023405...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 7*A)^n = (7 - 5*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4))/2 = 0.99066278628065227...
(V.3) Let A = A(-exp(-Pi)) = -0.03314064170176376172583062314299135400117746157373562359...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - 7*A)^n = (7 - 5*(Pi/2)^(1/4)/gamma(3/4))/2 = 1.2160521546097079...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001843340051041967867985717685295689652563446679869985649...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - 7*A)^n = (7 - 5*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4))/2 = 1.00933721359773216...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (x^m - 7*Ser(A))^m ) - 1 + 5*sum(m=1,#A, x^(m^2) ), #A-1)/7 ); A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (x^n - 7*A(x))^n = 1 - 5*Sum_{n>=1} x^(n^2).
(2) Sum_{n=-oo..+oo} x^n * (x^n + 7*A(x))^(n-1) = 1 - 5*Sum_{n>=1} x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n - 7*A(x))^n = 0.
(4) Sum_{n=-oo..+oo} x^(n^2) / (1 - 7*x^n*A(x))^n = 1 - 5*Sum_{n>=1} x^(n^2).
(5) Sum_{n=-oo..+oo} x^(n^2) / (1 + 7*x^n*A(x))^(n+1) = 1 - 5*Sum_{n>=1} x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 - 7*x^n*A(x))^n = 0.
Showing 1-10 of 16 results. Next