A355868
G.f. A(x) satisfies: 1 = Sum_{n=-oo..+oo} (x^n - 2*x*A(x))^n.
Original entry on oeis.org
1, 2, 3, 3, 5, 39, 206, 697, 1656, 3208, 8727, 41667, 192142, 688944, 1965643, 5117374, 15888133, 63924038, 263759291, 955198539, 3017571957, 9101208987, 30075674452, 113177783141, 437460265979, 1583161667787, 5299622270275, 17294182815347, 59169678008804
Offset: 0
G.f.: A(x) = 1 + 2*x + 3*x^2 + 3*x^3 + 5*x^4 + 39*x^5 + 206*x^6 + 697*x^7 + 1656*x^8 + 3208*x^9 + 8727*x^10 + 41667*x^11 + 192142*x^12 + ...
where
1 = ... + (x^(-3) - 2*x*A(x))^(-3) + (x^(-2) - 2*x*A(x))^(-2) + (x^(-1) - 2*x*A(x))^(-1) + 1 + (x - 2*x*A(x)) + (x^2 - 2*x*A(x))^2 + (x^3 - 2*x*A(x))^3 + ... + (x^n - 2*x*A(x))^n + ...
and
1 = ... + x^(-5)/(x^(-3) + 2*A(x))^3 + x^(-3)/(x^(-2) + 2*A(x))^2 + x^(-1)/(x^(-1) + 2*A(x)) + x + x^3*(x + 2*A(x)) + x^5*(x^2 + 2*A(x))^2 + x^7*(x^3 + 2*A(x))^3 + ... + x^(2*n+1)*(x^n + 2*A(x))^n + ...
also,
1 = ... + x^9*(1 - 2*A(x)/x^2)^3 + x^4*(1 - 2*A(x)/x)^2 + x*(1 - 2*A(x)) + 1 + x/(1 - 2*A(x)*x^2) + x^4/(1 - 2*A(x)*x^3)^2 + x^9/(1 - 2*A(x)*x^4)^3 + ... + x^(n^2)/(1 - 2*A(x)*x^(n+1))^n + ...
further,
1 = ... + x^9*(1 + 2*A(x)/x^2)^2 + x^4*(1 + 2*A(x)/x) + x + 1/(1 + 2*A(x)*x) + x/(1 + 2*A(x)*x^2)^2 + x^4/(1 - 2*A(x)*x^3)^3 + x^9/(1 - 2*A(x)*x^4)^4 + ... + x^(n^2)/(1 + 2*A(x)*x^(n+1))^(n+1) + ...
SPECIFIC VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.04720243920412572796492634515550526365563452970121157309...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - 2*A)^n = 1.
(V.2) Let A = A(exp(-2*Pi)) = 0.001874436990256710694689538031391789940066981740061145959...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 2*A)^n = 1.
(V.3) Let A = A(-exp(-Pi)) = -0.03971121915244100584186154683625533541823516978831008865...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - 2*A)^n = 1.
(V.4) Let A = A(-exp(-2*Pi)) = -0.001860487547859226152163099117755736250804492732905479139...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - 2*A)^n = 1.
Cf.
A370041,
A370030,
A370031,
A370033,
A370034,
A370035,
A370036,
A370037,
A370038,
A370039,
A370043.
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (x^m - 2*x*Ser(A))^m ), #A)/2);A[n+1]}
for(n=0,30,print1(a(n),", "))
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, x^(2*m+1) * (x^m + 2*Ser(A))^m ), #A)/2);A[n+1]}
for(n=0,30,print1(a(n),", "))
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, x^(m^2)/(1 - 2*Ser(A)*x^(m+1))^m ), #A)/2);A[n+1]}
for(n=0,30,print1(a(n),", "))
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, x^(m^2)/(1 + 2*Ser(A)*x^(m+1))^(m+1) ), #A)/2);A[n+1]}
for(n=0,30,print1(a(n),", "))
A370041
Triangle of coefficients T(n,k) in g.f. A(x,y) satisfying Sum_{n=-oo..+oo} (x^n - y*A(x,y))^n = 1 - (y-2)*Sum_{n>=1} x^(n^2), for n >= 1, as read by rows.
Original entry on oeis.org
1, 0, 1, -1, 0, 1, 1, -3, 0, 1, 1, 6, -6, 0, 1, -1, 6, 19, -10, 0, 1, -2, -18, 17, 44, -15, 0, 1, 1, -4, -98, 35, 85, -21, 0, 1, 4, 36, 39, -334, 60, 146, -28, 0, 1, -2, 11, 291, 311, -879, 91, 231, -36, 0, 1, -5, -74, -264, 1310, 1286, -1960, 126, 344, -45, 0, 1, 3, -30, -627, -2547, 4248, 3935, -3892, 162, 489, -55, 0, 1
Offset: 1
G.f.: A(x,y) = x*(1) + x^2*(0 + y) + x^3*(-1 + y^2) + x^4*(1 - 3*y + y^3) + x^5*(1 + 6*y - 6*y^2 + y^4) + x^6*(-1 + 6*y + 19*y^2 - 10*y^3 + y^5) + x^7*(-2 - 18*y + 17*y^2 + 44*y^3 - 15*y^4 + y^6) + x^8*(1 - 4*y - 98*y^2 + 35*y^3 + 85*y^4 - 21*y^5 + y^7) + x^9*(4 + 36*y + 39*y^2 - 334*y^3 + 60*y^4 + 146*y^5 - 28*y^6 + y^8) + x^10*(-2 + 11*y + 291*y^2 + 311*y^3 - 879*y^4 + 91*y^5 + 231*y^6 - 36*y^7 + y^9) + ...
where
Sum_{n=-oo..+oo} (x^n - y*A(x,y))^n = 1 - (y-2)*Sum_{n>=1} x^(n^2).
TRIANGLE.
This triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) begins
1;
0, 1;
-1, 0, 1;
1, -3, 0, 1;
1, 6, -6, 0, 1;
-1, 6, 19, -10, 0, 1;
-2, -18, 17, 44, -15, 0, 1;
1, -4, -98, 35, 85, -21, 0, 1;
4, 36, 39, -334, 60, 146, -28, 0, 1;
-2, 11, 291, 311, -879, 91, 231, -36, 0, 1;
-5, -74, -264, 1310, 1286, -1960, 126, 344, -45, 0, 1;
3, -30, -627, -2547, 4248, 3935, -3892, 162, 489, -55, 0, 1;
6, 178, 773, -2626, -12982, 11138, 9989, -7092, 195, 670, -66, 0, 1;
-4, 40, 1525, 10094, -5842, -48126, 25138, 22258, -12093, 220, 891, -78, 0, 1;
...
Cf.
A370030,
A370031,
A355868,
A370033,
A370034,
A370035,
A370036,
A370037,
A370038,
A370039,
A370043.
-
/* Generate A(x, y) by use of definition in name */
{T(n,k) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-sqrtint(#A+1),#A, (x^m - y*Ser(A))^m ) - 1 + (y-2)*sum(m=1,sqrtint(#A+1), x^(m^2) ), #A-1)/y ); polcoeff(A[n+1],k,y)}
for(n=1,15, for(k=0,n-1, print1(T(n,k),", "));print(""))
-
/* Generate A(x, y) recursively using integration wrt y */
{T(n, k) = my(A = x +x*O(x^n), M=sqrtint(n+1), Q = sum(m=1, M, x^(m^2)) +x*O(x^n));
for(i=0, n, A = (1/y) * intformal( Q / sum(m=-M, n, m * (x^m - y*A)^(m-1)), y) +x*O(x^n));
polcoeff(polcoeff(A, n, x), k, y)}
for(n=1, 15, for(k=0, n-1, print1(T(n, k), ", ")); print(""))
A370020
Table in which the g.f. of row n, R(n,x), satisfies Sum_{k=-oo..+oo} (-1)^k * (x^k + n*R(n,x))^k = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2), for n >= 1, as read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 1, 3, 7, 9, 1, 4, 12, 25, 22, 1, 5, 19, 53, 85, 63, 1, 6, 28, 99, 234, 301, 155, 1, 7, 39, 169, 529, 1041, 1086, 415, 1, 8, 52, 269, 1054, 2853, 4711, 3927, 1124, 1, 9, 67, 405, 1917, 6667, 15566, 21573, 14328, 2957, 1, 10, 84, 583, 3250, 13893, 42627, 85879, 99484, 52724, 8047, 1, 11, 103, 809, 5209, 26541, 101830, 275211, 477716, 461657, 194915, 21817
Offset: 1
This table of coefficients T(n,k) of x^k in R(n,x), n >= 1, k >= 1, begins:
A370021: [1, 1, 4, 9, 22, 63, 155, 415, ...];
A370022: [1, 2, 7, 25, 85, 301, 1086, 3927, ...];
A370023: [1, 3, 12, 53, 234, 1041, 4711, 21573, ...];
A370024: [1, 4, 19, 99, 529, 2853, 15566, 85879, ...];
A370025: [1, 5, 28, 169, 1054, 6667, 42627, 275211, ...];
A370026: [1, 6, 39, 269, 1917, 13893, 101830, 753255, ...];
A370027: [1, 7, 52, 405, 3250, 26541, 219311, 1828657, ...];
A370028: [1, 8, 67, 583, 5209, 47341, 435366, 4039863, ...];
A370029: [1, 9, 84, 809, 7974, 79863, 809131, 8270199, ...];
A370042: [1, 10, 103, 1089, 11749, 128637, 1423982, 15898231, ...];
...
where the n-th row function R(n,x) satisfies
Sum_{k=-oo..+oo} (-1)^k * (x^k + n*R(n,x))^k = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2).
-
{T(n,k) = my(A=[0,1]); for(i=0,k, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + n*Ser(A))^m ) - 1 - (n+2)*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/n ); A[k+1]}
for(n=1,12, for(k=1,10, print1(T(n,k),", "));print(""))
A370031
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (x^n - A(x))^n = Sum_{n>=0} x^(n^2).
Original entry on oeis.org
1, 1, 0, -1, 2, 15, 27, -1, -76, 19, 719, 1687, 184, -5976, -3749, 44093, 130933, 42026, -512833, -667101, 2976177, 11391169, 6608432, -45604863, -87819235, 202544340, 1053407806, 922859161, -4085924365, -10600384406, 12656739909, 100646660458, 121472828448, -360976456530
Offset: 1
G.f.: A(x) = 1 + x - x^3 + 2*x^4 + 15*x^5 + 27*x^6 - x^7 - 76*x^8 + 19*x^9 + 719*x^10 + 1687*x^11 + 184*x^12 - 5976*x^13 - 3749*x^14 + 44093*x^15 + ...
where
Sum_{n=-oo..+oo} (x^n - A(x))^n = 1 + x + x^4 + x^9 + x^16 + x^25 + x^36 + x^49 + ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.04507828029039130528308497098432879536368681539259286273...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - A)^n = (1 + Pi^(1/4)/gamma(3/4))/2 = 1.0432174056066540...
(V.2) Let A = A(exp(-2*Pi)) = 0.001870930061948701432816606547007172908053584772650237678...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - A)^n = (1 + sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4))/2 = 1.00186744274386954...
(V.3) Let A = A(-exp(-Pi)) = -0.04135017416264159536574596265267969182735801577042441264...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - A)^n = (1 + (Pi/2)^(1/4)/gamma(3/4))/2 = 0.9567895690780584107...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001863955401558124515592555303127910405358304631205735085...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - A)^n = (1 + 2^(1/8)*(Pi/2)^(1/4)/gamma(3/4))/2 = 0.99813255728045356...
Cf.
A370041,
A370030,
A355868,
A370033,
A370034,
A370035,
A370036,
A370037,
A370038,
A370039,
A370043.
-
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(n=-#A,#A, (x^n - Ser(A))^n ) - sum(n=0,#A, x^(n^2) ), #A-1) ); A[n+1]}
for(n=1,40, print1(a(n),", "))
A370033
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (x^n - 3*A(x))^n = 1 - Sum_{n>=1} x^(n^2).
Original entry on oeis.org
1, 3, 8, 19, 46, 161, 799, 4021, 17932, 71311, 268639, 1045731, 4464576, 20500010, 95221503, 429913365, 1879365529, 8112744634, 35452835755, 158833086233, 725458442577, 3329609464605, 15194309369384, 68837584452055, 311257278509193, 1413730859134250, 6469321177004978
Offset: 1
G.f.: A(x) = 1 + 3*x + 8*x^2 + 19*x^3 + 46*x^4 + 161*x^5 + 799*x^6 + 4021*x^7 + 17932*x^8 + 71311*x^9 + 268639*x^10 + 1045731*x^11 + 4464576*x^12 + ...
where
Sum_{n=-oo..+oo} (x^n - 3*A(x))^n = 1 - x - x^4 - x^9 - x^16 - x^25 - x^36 - x^49 - ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.04953636800560980886288845724196786482586224709976648461...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - 3*A)^n = (3 - Pi^(1/4)/gamma(3/4))/2 = 0.956782594393345992...
(V.2) Let A = A(exp(-2*Pi)) = 0.001877957090194880545086201853719041435355287864597005509...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 3*A)^n = (3 - sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4))/2 = 0.998132557256130454...
(V.3) Let A = A(-exp(-Pi)) = -0.03819699447470815952471171970837842342724818247967540335...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - 3*A)^n = (3 - (Pi/2)^(1/4)/gamma(3/4))/2 = 1.0432104309219415...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001857032573904813918259314464039219802478066024973444789...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - 3*A)^n = (3 - 2^(1/8)*(Pi/2)^(1/4)/gamma(3/4))/2 = 1.001867442719546432...
Cf.
A370041,
A370030,
A370031,
A355868,
A370034,
A370035,
A370036,
A370037,
A370038,
A370039,
A370043.
-
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (x^m - 3*Ser(A))^m ) - 1 + sum(m=1,#A, x^(m^2) ), #A-1)/3 ); A[n+1]}
for(n=1,30, print1(a(n),", "))
A370034
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (x^n - 4*A(x))^n = 1 - 2*Sum_{n>=1} x^(n^2).
Original entry on oeis.org
1, 4, 15, 53, 185, 711, 3270, 17297, 95108, 511258, 2653139, 13479835, 68633758, 356913516, 1906525759, 10388550830, 57084621325, 313692565172, 1719365476703, 9416232699651, 51699722653269, 285294478988749, 1583233662850172, 8826549215612727, 49354550054780111, 276444281747417079
Offset: 1
G.f.: A(x) = x + 4*x^2 + 15*x^3 + 53*x^4 + 185*x^5 + 711*x^6 + 3270*x^7 + 17297*x^8 + 95108*x^9 + 511258*x^10 + 2653139*x^11 + 13479835*x^12 + ...
where
Sum_{n=-oo..+oo} (x^n - 4*A(x))^n = 1 - 2*x - 2*x^4 - 2*x^9 - 2*x^16 - 2*x^25 - 2*x^36 - 2*x^49 - ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05211271680112049721451382589099198923178830298930738503...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - 4*A)^n = 2 - Pi^(1/4)/gamma(3/4) = 0.913565188786691985...
(V.2) Let A = A(exp(-2*Pi)) = 0.001881490436109324727231096204943046774873234177072692211...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 4*A)^n = 2 - sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) = 0.99626511451226...
(V.3) Let A = A(-exp(-Pi)) = -0.03679381086518350821622244996144281973183248006035375080...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - 4*A)^n = 2 - (Pi/2)^(1/4)/gamma(3/4) = 1.08642086184388317...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001853590408074327278987912837104527635895010708605840824...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - 4*A)^n = 2 - 2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) = 1.003734885439...
Cf.
A370041,
A370030,
A370031,
A355868,
A370033,
A370035,
A370036,
A370037,
A370038,
A370039,
A370043.
-
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (x^m - 4*Ser(A))^m ) - 1 + 2*sum(m=1,#A, x^(m^2) ), #A-1)/4 ); A[n+1]}
for(n=1,30, print1(a(n),", "))
A370035
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (x^n - 5*A(x))^n = 1 - 3*Sum_{n>=1} x^(n^2).
Original entry on oeis.org
1, 5, 24, 111, 506, 2379, 12083, 67531, 406284, 2531203, 15866775, 98883303, 612775096, 3798083196, 23698615411, 149450139421, 953022469813, 6132672546362, 39706366904663, 258032916789711, 1680779512045521, 10970344718827785, 71764325720800072, 470691291168007709
Offset: 1
G.f.: A(x) = x + 5*x^2 + 24*x^3 + 111*x^4 + 506*x^5 + 2379*x^6 + 12083*x^7 + 67531*x^8 + 406284*x^9 + 2531203*x^10 + 15866775*x^11 + 98883303*x^12 + ...
where
Sum_{n=-oo..+oo} (x^n - 5*A(x))^n = 1 - 3*x - 3*x^4 - 3*x^9 - 3*x^16 - 3*x^25 - 3*x^36 - 3*x^49 - ...
\SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05497127752043377386868704294930896868077597772598908285...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - 5*A)^n = (5 - 3*Pi^(1/4)/gamma(3/4) )/2 = 0.870347783180037978...
(V.2) Let A = A(exp(-2*Pi)) = 0.001885037102906729934432374294398706956703235597857256076...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 5*A)^n = (5 - 3*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4))/2 = 0.994397671768391...
(V.3) Let A = A(-exp(-Pi)) = -0.03548990756971248576955893224372969073755967165800772531...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - 5*A)^n = (5 - 3*(Pi/2)^(1/4)/gamma(3/4))/2 = 1.12963129276582476...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001850160979277236538611428135062916090397865766804127684...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - 5*A)^n = (5 - 3*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4))/2 = 1.005602328158639...
Cf.
A370041,
A370030,
A370031,
A355868,
A370033,
A370034,
A370036,
A370037,
A370038,
A370039,
A370043.
-
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (x^m - 5*Ser(A))^m ) - 1 + 3*sum(m=1,#A, x^(m^2) ), #A-1)/5 ); A[n+1]}
for(n=1,30, print1(a(n),", "))
A370036
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (x^n - 6*A(x))^n = 1 - 4*Sum_{n>=1} x^(n^2).
Original entry on oeis.org
1, 6, 35, 199, 1117, 6335, 37222, 230809, 1515784, 10423684, 73758799, 529151547, 3815582934, 27567473744, 199625904531, 1451286365478, 10610026385893, 78068267016226, 578088243024187, 4304808678569939, 32204405165738517, 241805832191132439, 1820963567348143772
Offset: 1
G.f.: A(x) = x + 6*x^2 + 35*x^3 + 199*x^4 + 1117*x^5 + 6335*x^6 + 37222*x^7 + 230809*x^8 + 1515784*x^9 + 10423684*x^10 + 73758799*x^11 + 529151547*x^12 + ...
where
Sum_{n=-oo..+oo} (x^n - 6*A(x))^n = 1 - 4*x - 4*x^4 - 4*x^9 - 4*x^16 - 4*x^25 - 4*x^36 - 4*x^49 - ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05816104948088020874729529058423242784366544822359858088...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - 6*A)^n = 3 - 2*Pi^(1/4)/gamma(3/4) = 0.82713037757338397...
(V.2) Let A = A(exp(-2*Pi)) = 0.001888597166059649200752082246148944967408910981759517793...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 6*A)^n = 3 - 2*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) = 0.9925302290245218...
(V.3) Let A = A(-exp(-Pi)) = -0.03427512499419794844050440831018295417511284891315471397...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - 6*A)^n = 3 - 2*(Pi/2)^(1/4)/gamma(3/4) = 1.172841723687766...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001846744216948148769402996728724142172026226548695349349...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - 6*A)^n = 3 - 2*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) = 1.007469770878185...
Cf.
A370041,
A370030,
A370031,
A355868,
A370033,
A370034,
A370035,
A370037,
A370038,
A370039,
A370043.
-
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (x^m - 6*Ser(A))^m ) - 1 + 4*sum(m=1,#A, x^(m^2) ), #A-1)/6 ); A[n+1]}
for(n=1,30, print1(a(n),", "))
A370037
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (x^n - 7*A(x))^n = 1 - 5*Sum_{n>=1} x^(n^2).
Original entry on oeis.org
1, 7, 48, 323, 2150, 14349, 97431, 681857, 4956116, 37422943, 291763607, 2327820547, 18848767552, 153975563934, 1264733865463, 10431060837749, 86368123241833, 718121985169658, 5997857713743011, 50325664101701349, 424138198629299217, 3589151537280637957, 30481898682409007792
Offset: 1
G.f.: A(x) = x + 7*x^2 + 48*x^3 + 323*x^4 + 2150*x^5 + 14349*x^6 + 97431*x^7 + 681857*x^8 + 4956116*x^9 + 37422943*x^10 + 291763607*x^11 + ...
where
Sum_{n=-oo..+oo} (x^n - 7*A(x))^n = 1 - 5*x - 5*x^4 - 5*x^9 - 5*x^16 - 5*x^25 - 5*x^36 - 5*x^49 - ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.06174306640715063509845961016774795661670689719654375131...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - 7*A)^n = (7 - 5*Pi^(1/4)/gamma(3/4))/2 = 0.78391297196672996...
(V.2) Let A = A(exp(-2*Pi)) = 0.001892170701611855386420113452656768397809538392272023405...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 7*A)^n = (7 - 5*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4))/2 = 0.99066278628065227...
(V.3) Let A = A(-exp(-Pi)) = -0.03314064170176376172583062314299135400117746157373562359...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - 7*A)^n = (7 - 5*(Pi/2)^(1/4)/gamma(3/4))/2 = 1.2160521546097079...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001843340051041967867985717685295689652563446679869985649...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - 7*A)^n = (7 - 5*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4))/2 = 1.00933721359773216...
Cf.
A370041,
A370030,
A370031,
A355868,
A370033,
A370034,
A370035,
A370036,
A370038,
A370039,
A370043.
-
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (x^m - 7*Ser(A))^m ) - 1 + 5*sum(m=1,#A, x^(m^2) ), #A-1)/7 ); A[n+1]}
for(n=1,30, print1(a(n),", "))
A370038
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (x^n - 8*A(x))^n = 1 - 6*Sum_{n>=1} x^(n^2).
Original entry on oeis.org
1, 8, 63, 489, 3761, 28911, 224174, 1768801, 14298852, 118834966, 1014912939, 8876489811, 79106007766, 714758437500, 6521121292423, 59905861779190, 553172777516749, 5129986605394544, 47761053650028335, 446350549038171483, 4186889953961917077, 39416115485839527945
Offset: 1
G.f.: A(x) = x + 8*x^2 + 63*x^3 + 489*x^4 + 3761*x^5 + 28911*x^6 + 224174*x^7 + 1768801*x^8 + 14298852*x^9 + 118834966*x^10 + 1014912939*x^11 + ...
where
Sum_{n=-oo..+oo} (x^n - 8*A(x))^n = 1 - 6*x - 6*x^4 - 6*x^9 - 6*x^16 - 6*x^25 - 6*x^36 - 6*x^49 - ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.06579433445460281447496748523290398966344297589844019028...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - 8*A)^n = 4 - 3*Pi^(1/4)/gamma(3/4) = 0.740695566360075956...
(V.2) Let A = A(exp(-2*Pi)) = 0.001895757786183755555448115532175643265455444051246465664...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 8*A)^n = 4 - 3*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) = 0.98879534353678272...
(V.3) Let A = A(-exp(-Pi)) = -0.03207876150064786089070312769117792591667175850120792604...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - 8*A)^n = 4 - 3*(Pi/2)^(1/4)/gamma(3/4) = 1.25926258553164953...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001839948412029108042031275075360099309960919616491079407...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - 8*A)^n = 4 - 3*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) = 1.01120465631727859...
Cf.
A370041,
A370030,
A370031,
A355868,
A370033,
A370034,
A370035,
A370036,
A370037,
A370039,
A370043.
-
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (x^m - 8*Ser(A))^m ) - 1 + 6*sum(m=1,#A, x^(m^2) ), #A-1)/8 ); A[n+1]}
for(n=1,30, print1(a(n),", "))
Showing 1-10 of 13 results.
Comments