cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370060 Array read by antidiagonals: T(n,k) is the number of achiral dissections of a polygon into n k-gons by nonintersecting diagonals rooted at a cell, n >= 1, k >= 3.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 4, 2, 1, 1, 4, 4, 12, 5, 1, 1, 3, 6, 9, 18, 5, 1, 1, 5, 6, 26, 22, 55, 14, 1, 1, 4, 8, 21, 45, 52, 88, 14, 1, 1, 6, 8, 45, 51, 204, 140, 273, 42, 1, 1, 5, 10, 38, 84, 190, 380, 340, 455, 42, 1, 1, 7, 10, 69, 92, 500, 506, 1771, 969, 1428, 132
Offset: 1

Views

Author

Andrew Howroyd, Feb 08 2024

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.

Examples

			Array begins:
=============================================
n\k|  3   4   5    6    7    8    9    10 ...
---+-----------------------------------------
1  |  1   1   1    1    1    1    1     1 ...
2  |  1   1   1    1    1    1    1     1 ...
3  |  1   3   2    4    3    5    4     6 ...
4  |  2   4   4    6    6    8    8    10 ...
5  |  2  12   9   26   21   45   38    69 ...
6  |  5  18  22   45   51   84   92   135 ...
7  |  5  55  52  204  190  500  468   992 ...
8  | 14  88 140  380  506 1008 1240  2100 ...
9  | 14 273 340 1771 1950 6200 6545 15990 ...
  ...
		

Crossrefs

Columns k=3..6 are A208355(n-1), A124817(n-1), A369472, A370061.
Cf. A070914 (rooted), A295222 (oriented), A295259 (unoriented), A369929, A370062 (achiral unrooted).

Programs

  • PARI
    \\ here u is Fuss-Catalan sequence with p = k-1.
    u(n, k, r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n, k) = {if(k%2, if(n%2, u((n-1)/2, k, (k-1)/2), u(n/2-1, k, (k-1))), if(n%2, u((n-1)/2, k, k/2+1), u(n/2-1, k, k)) )}
    for(n=1, 9, for(k=3, 10, print1(T(n, k), ", ")); print);

Formula

T(n,k) = 2*A295259(n,k) - A295222(n,k).
T(n,2*k+1) = A370062(n,2*k+1).