cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A369929 Array read by antidiagonals: T(n,k) is the number of achiral noncrossing partitions composed of n blocks of size k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 3, 6, 1, 1, 1, 1, 3, 5, 7, 10, 1, 1, 1, 1, 4, 5, 16, 12, 20, 1, 1, 1, 1, 4, 7, 18, 31, 30, 35, 1, 1, 1, 1, 5, 7, 31, 35, 102, 55, 70, 1, 1, 1, 1, 5, 9, 34, 64, 136, 213, 143, 126, 1
Offset: 0

Views

Author

Andrew Howroyd, Feb 07 2024

Keywords

Comments

T(n,2*k-1) is the number of achiral noncrossing k-gonal cacti with n polygons.

Examples

			Array begins:
===============================================
n\k| 1  2   3   4    5    6    7    8     9 ...
---+-------------------------------------------
0  | 1  1   1   1    1    1    1    1     1 ...
1  | 1  1   1   1    1    1    1    1     1 ...
2  | 1  1   1   1    1    1    1    1     1 ...
3  | 1  2   2   3    3    4    4    5     5 ...
4  | 1  3   3   5    5    7    7    9     9 ...
5  | 1  6   7  16   18   31   34   51    55 ...
6  | 1 10  12  31   35   64   70  109   117 ...
7  | 1 20  30 102  136  296  368  651   775 ...
8  | 1 35  55 213  285  663  819 1513  1785 ...
9  | 1 70 143 712 1155 3142 4495 9304 12350 ...
...
		

Crossrefs

Columns are: A000012, A001405(n-1), A047749 (k=3), A369930 (k=4), A143546 (k=5), A143547 (k=7), A143554 (k=9), A192893 (k=11).

Programs

  • PARI
    \\ u(n,k,r) are Fuss-Catalan numbers.
    u(n,k,r) = {r*binomial(k*n + r, n)/(k*n + r)}
    e(n,k) = {sum(j=0, n\2, u(j, k, 1+(n-2*j)*k/2))}
    T(n, k)={if(n==0, 1, if(k%2, if(n%2, 2*u(n\2, k, (k+1)/2), u(n/2, k, 1) + u(n/2-1, k, k)), e(n, k) + if(n%2, u(n\2, k, k/2)))/2)}

Formula

T(n,k) = 2*A303929(n,k) - A303694(n,k).
T(n,2*k-1) = 2*A361239(n,k) - A361236(n,k).

A369472 Number of achiral polyominoes composed of n pentagonal cells of the hyperbolic regular tiling with Schläfli symbol {5,oo}.

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 52, 140, 340, 969, 2394, 7084, 17710, 53820, 135720, 420732, 1068012, 3362260, 8579560, 27343888, 70068713, 225568798, 580034052, 1882933364, 4855986044, 15875338990, 41043559340, 134993766600
Offset: 1

Views

Author

Robert A. Russell, Jan 23 2024

Keywords

Comments

A stereographic projection of the {5,oo} tiling on the Poincaré disk can be obtained via the Christensson link.

Crossrefs

Column k=5 of A370060.
Polyominoes: A005038 (oriented), A005040 (unoriented), A369471 (chiral), A002293 (rooted), A047749 {4,oo}, A143546 {6,oo}.

Programs

  • Mathematica
    p=5; Table[If[EvenQ[n],Binomial[(p-1)n/2,n/2]/((p-2)n/2+1),If[OddQ[p],(p-1)Binomial[(p-1)n/2-1,(n-1)/2]/((p-2)n+1),p Binomial[(p-1)n/2-1/2,(n-1)/2]/((p-2)n+2)]],{n,35}]

Formula

For n even, a(n) = C(2n,n/2)/(3n/2+1).
For n odd, a(n) = 4*C(2n-1,(n-1)/2)/(3n+1).
a(n+2)/a(n) ~ 256/27. a(2m+1)/a(2m) ~ 32/9; a(2m)/a(2m-1) ~ 8/3.
a(n) = 2*A005040(n) - A005038(n) = A005038(n) - 2*A369471(n) = A005040(n) - A369471(n).
G.f.: G(z^2)+z*G(z^2)^2, where G(z)=1+z*G(z)^4, the generating function for A002293.
a(2m) = A002293(m) ~ (4^4/3^3)^m*sqrt(4/(2*Pi*(3*m)^3)). - Robert A. Russell, Jul 15 2024

A370062 Array read by antidiagonals: T(n,k) is the number of achiral dissections of a polygon into n k-gons by nonintersecting diagonals, n >= 1, k >= 3.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 4, 7, 5, 1, 1, 3, 5, 9, 12, 5, 1, 1, 4, 6, 18, 22, 30, 14, 1, 1, 4, 7, 21, 35, 52, 55, 14, 1, 1, 5, 8, 34, 51, 136, 140, 143, 42, 1, 1, 5, 9, 38, 70, 190, 285, 340, 273, 42, 1, 1, 6, 10, 55, 92, 368, 506, 1155, 969, 728, 132
Offset: 1

Views

Author

Andrew Howroyd, Feb 08 2024

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.

Examples

			Array begins:
=============================================
n\k|  3   4   5    6    7    8    9    10 ...
---+-----------------------------------------
1  |  1   1   1    1    1    1    1     1 ...
2  |  1   1   1    1    1    1    1     1 ...
3  |  1   2   2    3    3    4    4     5 ...
4  |  2   3   4    5    6    7    8     9 ...
5  |  2   7   9   18   21   34   38    55 ...
6  |  5  12  22   35   51   70   92   117 ...
7  |  5  30  52  136  190  368  468   775 ...
8  | 14  55 140  285  506  819 1240  1785 ...
9  | 14 143 340 1155 1950 4495 6545 12350 ...
  ...
		

Crossrefs

Columns are A208355(n-1), A047749 (k=4), A369472 (k=5), A143546 (k=6), A143547 (k=8), A143554 (k=10), A192893 (k=12).
Cf. A070914 (rooted), A295224 (oriented), A295260 (unoriented), A369929, A370060 (achiral rooted at cell).

Programs

  • PARI
    \\ here u is Fuss-Catalan sequence with p = k-1.
    u(n, k, r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n, k) = {(if(n%2, u((n-1)/2, k, k\2), if(k%2, u(n/2-1, k, k-1), u(n/2, k, 1))))}
    for(n=1, 9, for(k=3, 10, print1(T(n, k), ", ")); print);

Formula

T(n,k) = 2*A295260(n,k) - A295224(n,k).
T(n,2*k+1) = A370060(n,2*k+1).
T(n,2*k) = A369929(n,2*k-1).

A370061 Number of achiral dissections of a polygon into n hexagons by nonintersecting diagonals rooted at a cell.

Original entry on oeis.org

1, 1, 4, 6, 26, 45, 204, 380, 1771, 3450, 16380, 32886, 158224, 324632, 1577532, 3290040, 16112057, 34034715, 167710664, 357919100, 1772645420, 3815041230, 18974357220, 41124015036, 205263418941, 447534498320, 2240623268512, 4910258796240, 24648785802336, 54257308779600
Offset: 1

Views

Author

Andrew Howroyd, Feb 08 2024

Keywords

Crossrefs

Column k=6 of A370060.

Programs

  • PARI
    a(n)=my(m=n\2); if(n%2==0, 6*binomial(5*m+1, m-1)/(5*m+1), 4*binomial(5*m+4, m)/(5*m+4))

Formula

a(2*n) = 6*binomial(5*n+1, n-1)/(5*n+1); a(2*n+1) = 4*binomial(5*n+4, n)/(5*n+4).
Showing 1-4 of 4 results.