cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370064 Triangle read by rows: T(n,k) is the number of simple connected graphs on n labeled nodes with k articulation vertices, (0 <= k <= n).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 3, 0, 0, 10, 16, 12, 0, 0, 238, 250, 180, 60, 0, 0, 11368, 8496, 4560, 1920, 360, 0, 0, 1014888, 540568, 211680, 75600, 21000, 2520, 0, 0, 166537616, 61672192, 17186624, 4663680, 1226400, 241920, 20160, 0, 0, 50680432112, 12608406288, 2416430016, 469336896, 98431200, 20109600, 2963520, 181440, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Feb 23 2024

Keywords

Examples

			Triangle begins:
        1;
        1,      0;
        1,      0,      0;
        1,      3,      0,     0;
       10,     16,     12,     0,     0;
      238,    250,    180,    60,     0,    0;
    11368,   8496,   4560,  1920,   360,    0, 0;
  1014888, 540568, 211680, 75600, 21000, 2520, 0, 0;
  ...
		

Crossrefs

Columns k=0..3 are A013922(n>1), A013923, A013924, A013925.
Row sums are A001187.
Cf. A001710, A325111 (unlabeled version).

Programs

  • PARI
    J(p, n)={my(u=Vecrev(p,1+n)); forstep(k=n, 1, -1, u[k] -= k*u[k+1]; u[k]/=n+1-k); u}
    G(n)={log(x/serreverse(x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n)))))}
    T(n)={my(v=Vec(serlaplace( 1 + ((y-1)*x + serreverse(x/((1-y) + y*exp(G(n)))))/y ))); vector(#v, n, J(v[n], n-1))}
    { my(A=T(7)); for(i=1, #A, print(A[i])) }

Formula

T(n, n-2) = n!/2 = A001710(n) for n >= 2.