cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A325111 Triangle read by rows: T(n,k) is the number of simple connected graphs on n unlabeled nodes with k articulation vertices, (0 <= k <= n).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 3, 2, 1, 0, 0, 10, 7, 3, 1, 0, 0, 56, 33, 17, 5, 1, 0, 0, 468, 244, 101, 32, 7, 1, 0, 0, 7123, 2792, 890, 242, 60, 9, 1, 0, 0, 194066, 52448, 11468, 2461, 527, 97, 12, 1, 0, 0, 9743542, 1690206, 239728, 35839, 6056, 1029, 155, 15, 1, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Sep 05 2019

Keywords

Comments

Articulation vertices are also called cutpoints. These are vertices that when removed increase the component count of the graph.

Examples

			Triangle begins:
     1;
     1     0;
     1,    0,   0;
     1,    1,   0,   0;
     3,    2,   1,   0,  0;
    10,    7,   3,   1,  0, 0;
    56,   33,  17,   5,  1, 0, 0;
   468,  244, 101,  32,  7, 1, 0, 0;
  7123, 2792, 890, 242, 60, 9, 1, 0, 0;
  ...
		

Crossrefs

Columns k=0..5 are A002218(n>1), A241767, A241768, A241769, A241770, A241771.
Row sums are A001349.
Cf. A327077, A370064 (labeled version).

Extensions

Diagonal for k = n inserted by Andrew Howroyd, Feb 25 2024

A013923 Number of labeled connected graphs with n vertices and 1 cutpoint.

Original entry on oeis.org

3, 16, 250, 8496, 540568, 61672192, 12608406288, 4697459302400, 3256012245850496, 4276437400678311936, 10796431791679078528256, 52955364458428847588956160, 508511231062550463852707804160, 9611398894866376672902234634977280
Offset: 3

Views

Author

Stanley Selkow (sms(AT)owl.WPI.EDU)

Keywords

Crossrefs

Column k=1 of A370064.

Formula

E.g.f.: x * (exp(B'(x)) - B'(x) - 1) where B(x) is the e.g.f. for A013922. - Sean A. Irvine, Aug 28 2018

Extensions

More terms from Sean A. Irvine, Aug 28 2018

A013924 Number of labeled connected graphs with n nodes and 2 cutpoints.

Original entry on oeis.org

12, 180, 4560, 211680, 17186624, 2416430016, 597615868800, 266262716016000, 218583901063537152, 336744209796848156160, 987653716558634390487040, 5576385411303897176201779200, 61117320790343064985205192540160
Offset: 4

Views

Author

Stanley Selkow (sms(AT)owl.WPI.EDU)

Keywords

Crossrefs

Column k=2 of A370064.

Extensions

More terms from Sean A. Irvine, Aug 29 2018

A013925 Number of labeled connected graphs with n nodes and 3 cutpoints.

Original entry on oeis.org

60, 1920, 75600, 4663680, 469336896, 79132032000, 23121510192000, 12082931084928000, 11564306171310537216, 20625639730671895535616, 69501783433272242637312000, 447403458171641201324598067200, 5550030610876067133522251137105920
Offset: 5

Views

Author

Stanley Selkow (sms(AT)owl.WPI.EDU)

Keywords

Comments

Selkow paper has typographical error a(9) = 469336898. - Sean A. Irvine, Aug 29 2018

Crossrefs

Column k=3 of A370064.

Extensions

a(9) corrected and more terms from Sean A. Irvine, Aug 29 2018

A370065 Triangle read by rows: T(n,k) is the number of simple graphs on n labeled nodes with k articulation vertices, (0 <= k <= n).

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 5, 3, 0, 0, 24, 28, 12, 0, 0, 334, 390, 240, 60, 0, 0, 13262, 10776, 6090, 2280, 360, 0, 0, 1106862, 615860, 255570, 92820, 23520, 2520, 0, 0, 175376048, 66625504, 19275424, 5446560, 1429680, 262080, 20160, 0, 0, 52257938968, 13210716600, 2592577512, 520122456, 112145040, 22649760, 3144960, 181440, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Feb 25 2024

Keywords

Examples

			Triangle begins:
        1;
        1,      0;
        2,      0,      0;
        5,      3,      0,     0;
       24,     28,     12,     0,     0;
      334,    390,    240,    60,     0,    0;
    13262,  10776,   6090,  2280,   360,    0, 0;
  1106862, 615860, 255570, 92820, 23520, 2520, 0, 0;
  ...
		

Crossrefs

Row sums are A006125.
Column k=0 is A370066.
Cf. A188588, A370064 (connected).

Programs

  • PARI
    \\ Needs G, J defined in A370064.
    T(n)={my(v=Vec( ((y-1)*x + serreverse(x/((1-y) + y*exp(G(n)))))/y ), w=Vec(serlaplace(exp(sum(k=1, n, Polrev(J(v[k],k),y)*x^k, O(x*x^n)) )))); vector(#w, n, Vecrev(w[n],n))}
    { my(A=T(8)); for(i=1, #A, print(A[i])) }

Formula

Exponential transform of A370064.
T(n+2, n) = A188588(n + 1).
Showing 1-5 of 5 results.