cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370098 a(n) = Sum_{k=0..n} binomial(3*n,k) * binomial(4*n-k-1,n-k).

Original entry on oeis.org

1, 6, 72, 978, 14016, 207006, 3116952, 47568618, 733189632, 11387193846, 177923724072, 2793666465090, 44042615547456, 696708049377294, 11053262513080440, 175800225426741978, 2802193910116429824, 44752001810800994022, 715924864099841086728
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*n, k)*binomial(4*n-k-1, n-k));

Formula

a(n) = [x^n] ( (1+x)^3/(1-x)^3 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x*(1-x)^3/(1+x)^3 ). See A365843.
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] (1-x)^(n-1)/(1-2*x)^(3*n).
a(n) = Sum_{k=0..n} 2^k * binomial(3*n,k) * binomial(n-1,n-k).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n+k-1,k) * binomial(n-1,n-k). (End)