A370685 Semiprimes that are also the sums of two, three and four successive semiprimes.
2045, 2705, 2855, 14614, 18838, 28437, 31299, 43603, 68807, 76841, 77386, 88041, 108415, 116822, 194605, 213679, 218729, 252094, 255202, 269653, 290449, 294683, 302761, 305362, 310799, 339382, 348242, 361055, 398111, 445066, 445174, 459761, 464567, 489809, 496081, 501386, 515981, 534777, 544405
Offset: 1
Keywords
Examples
a(3) = 2855 is a term because 2855 = 5 * 571 is a semiprime, A001358(423) = 1418 = 2*709 and A001358(424) = 1437 = 3 * 479 are two successive semiprimes whose sum is 2855, A001358(285) = 949 = 13 * 73, A001358(286) = 951 = 3 * 317 and A001358(287) = 955 = 5 * 191 are three successive semiprimes whose sum is 2855, and A001358(216) = 707 = 7 * 101, A001358(217) = 713 = 23 * 31, A001358(218) = 717 = 3 * 239, A001358(219) = 718 = 2 * 359 are four successive semiprimes whose sum is 2855.
Links
- Robert Israel, Table of n, a(n) for n = 1..2734
Programs
-
Maple
N:= 10^6: # for terms <= N P:= select(isprime, [2, seq(i, i=3..N/2, 2)]): nP:= nops(P): SP:= 0: for i from 1 while P[i]^2 <= N do m:= ListTools:-BinaryPlace(P, N/P[i]); SP:= SP, op(P[i]*P[i..m]); od: SP:= sort([SP]): SS:= ListTools:-PartialSums(SP): SS2:= {seq(SS[i]-SS[i-2], i=3..nops(SS))}: SS3:= {seq(SS[i]-SS[i-3], i=4..nops(SS))}: SS4:= {seq(SS[i]-SS[i-4], i=5..nops(SS))}: A:=SS2 intersect SS3 intersect SS4 intersect convert(SP, set): A:= sort(convert(A, list)):
Comments