A370167 Irregular triangle read by rows where T(n,k) is the number of unlabeled simple graphs covering n vertices with k = 0..binomial(n,2) edges.
1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 1, 1, 0, 0, 0, 1, 4, 5, 5, 4, 2, 1, 1, 0, 0, 0, 1, 3, 9, 15, 20, 22, 20, 14, 9, 5, 2, 1, 1, 0, 0, 0, 0, 1, 6, 20, 41, 73, 110, 133, 139, 126, 95, 64, 40, 21, 10, 5, 2, 1, 1, 0, 0, 0, 0, 1, 3, 15, 50, 124, 271, 515, 832, 1181, 1460, 1581, 1516, 1291, 970, 658, 400, 220, 114, 56, 24, 11, 5, 2, 1, 1
Offset: 0
Examples
Triangle begins: 1 0 0 1 0 0 1 1 0 0 1 2 2 1 1 0 0 0 1 4 5 5 4 2 1 1 0 0 0 1 3 9 15 20 22 20 14 9 5 2 1 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1350 (rows 0..20)
Programs
-
Mathematica
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]]; Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}],{k}],Union@@#==Range[n]&]]], {n,0,5},{k,0,Binomial[n,2]}]
-
PARI
\\ G(n) defined in A008406. row(n)={Vecrev(G(n)-if(n>0, G(n-1)), binomial(n,2)+1)} { for(n=0, 7, print(row(n))) } \\ Andrew Howroyd, Feb 19 2024
Extensions
a(42) onwards from Andrew Howroyd, Feb 19 2024