cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A218988 Power floor sequence of 2+sqrt(8).

Original entry on oeis.org

4, 19, 91, 439, 2119, 10231, 49399, 238519, 1151671, 5560759, 26849719, 129641911, 625966519, 3022433719, 14593600951, 70464138679, 340230958519, 1642780388791, 7932045389239, 38299303112119, 184925394005431, 892898788470199, 4311296729902519
Offset: 0

Views

Author

Clark Kimberling, Nov 11 2012

Keywords

Comments

See A214992 for a discussion of power floor sequence and the power floor function, p1(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(8), and the limit p1(r) = 3.8983688904482395322594950087206...
See A218989 for the power floor function, p4. For comparison with p1, limit(p4(r)/p1(r) = 4/3.

Examples

			a(0) = [r] = 4, where r = 2+sqrt(8).
a(1) = [4*r] = 19; a(2) = [19*r] = 91.
		

Crossrefs

Programs

  • Mathematica
    x = 2 + Sqrt[8]; z = 30; (* z = # terms in sequences *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    t1 = Table[p1[n], {n, 0, z}]  (* this sequence *)
    t2 = Table[p2[n], {n, 0, z}]  (* A057087 *)
    t3 = Table[p3[n], {n, 0, z}]  (* A086347 *)
    t4 = Table[p4[n], {n, 0, z}]  (* A218989 *)
  • PARI
    Vec((4 - x - 4*x^2) / ((1 - x)*(1 - 4*x - 4*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017

Formula

a(n) = floor(x*a(n-1)), where x=2+sqrt(8), a(0) = floor(x).
a(n) = 5*a(n-1) - 4*a(n-3).
G.f.: (4 - x - 4*x^2) / ((1 - x)*(1 - 4*x - 4*x^2)). [Corrected by Colin Barker, Nov 13 2017]
a(n) = (1/28)*(4 + (54-39*sqrt(2))*(2-2*sqrt(2))^n + (2*(1+sqrt(2)))^n*(54+39*sqrt(2))). - Colin Barker, Nov 13 2017
From Philippe Deléham, Mar 18 2024: (Start)
a(n) = 4*a(n-1) + 4*a(n-2) - 1.
a(n-1) = Sum_{k = 0..n} A370174(n,k)*3^k. (End)

A370175 a(n) = floor(x*a(n-1)) for n > 0 where x = (5+3*sqrt(5))/2, a(0) = 1.

Original entry on oeis.org

1, 5, 29, 169, 989, 5789, 33889, 198389, 1161389, 6798889, 39801389, 233001389, 1364013889, 7985076389, 46745451389, 273652638889, 1601990451389, 9378215451389, 54901029513889, 321396224826389, 1881486271701389, 11014412482638889, 64479493771701389
Offset: 0

Views

Author

Philippe Deléham, Mar 18 2024

Keywords

Comments

x = A090550 = 1 + 3*phi = 5.854101966..., where phi is the golden ratio.

Examples

			a(0) = 1, a(1) = floor(x) = 5 where x = (5+3*sqrt(5))/2.
a(2) = floor(5*x) = 29, a(3) = floor(29*x) = 169.
		

Crossrefs

Programs

  • Mathematica
    NestList[Floor[#*(5 + 3*Sqrt[5])/2] &, 1, 30] (* or *)
    LinearRecurrence[{6, 0, -5}, {1, 5, 29}, 30] (* Paolo Xausa, May 25 2024 *)

Formula

a(n) = 6*a(n-1) - 5*a(n-3), a(0) = 1, a(1) = 5, a(2) = 29.
a(n) = 5*a(n-1) + 5*a(n-2) - 1.
a(n) = (4*(5-2*sqrt(5))*((5-3*sqrt(5))/2)^n + 4*(5+2*sqrt(5))*((5+3*sqrt(5))/2)^n + 5)/45.
G.f.: (1 - x - x^2)/(1 - 6*x + 5*x^3).
a(n) = Sum_{k = 0..n} A370174(n,k)*4^k.
a(n) = (8*A057088(n) + 4*A057088(n-1) + 1)/9.

A370176 a(n) = floor(x*a(n-1)) for n > 0 where x = 3+sqrt(15), a(0) = 1.

Original entry on oeis.org

1, 6, 41, 281, 1931, 13271, 91211, 626891, 4308611, 29613011, 203529731, 1398856451, 9614317091, 66079041251, 454160150051, 3121435147811, 21453571787171, 147450041609891, 1013421680382371, 6965230331953571, 47871912074015651, 329022854435815331, 2261368599058985891
Offset: 0

Views

Author

Philippe Deléham, Mar 19 2024

Keywords

Comments

x = A092294 = 3+sqrt(15) = 6.872983346...

Examples

			a(0) = 1;
a(1) = floor(x) = 6 where x = 3+sqrt(15);
a(2) = floor(6*x) = 41;
a(3) = floor(41*x) = 281.
		

Crossrefs

Programs

  • Mathematica
    NestList[Floor[(Sqrt[15]+3)*#] &, 1, 25] (* or *)
    LinearRecurrence[{7, 0, -6}, {1, 6, 41}, 25] (* Paolo Xausa, Mar 31 2024 *)

Formula

a(n) = 7*a(n-1) - 6*a(n-3), a(0) = 1, a(1) = 6, a(2) = 41.
a(n) = 6*a(n-1) + 6*a(n-2) - 1.
a(n) = ((30-7*sqrt(15))*(3-sqrt(15))^n + (30+7*sqrt(15))*(3+sqrt(15))^n + 6)/66.
G.f.: (1-x-x^2)/(1-7*x+6*x^3).
a(n) = Sum_{k = 0..n} A370174(n,k)*5^k.
a(n) = (10*A057089(n) + 5*A057089(n-1) + 1)/11.

A371300 Triangle read by rows: Riordan array (1/(1 - x), (1 + x)/(1 - x - x^2)).

Original entry on oeis.org

1, 1, 2, 1, 5, 4, 1, 10, 16, 8, 1, 18, 45, 44, 16, 1, 31, 107, 158, 112, 32, 1, 52, 232, 461, 488, 272, 64, 1, 86, 474, 1190, 1680, 1392, 640, 128, 1, 141, 930, 2831, 5009, 5512, 3760, 1472, 256, 1, 230, 1772, 6355, 13541, 18602, 16816, 9760, 3328, 512
Offset: 0

Views

Author

Peter Luschny, Mar 18 2024

Keywords

Examples

			Triangle begins:
  [0] 1;
  [1] 1,  2;
  [2] 1,  5,   4;
  [3] 1, 10,  16,    8;
  [4] 1, 18,  45,   44,   16;
  [5] 1, 31, 107,  158,  112,   32;
  [6] 1, 52, 232,  461,  488,  272,   64;
  [7] 1, 86, 474, 1190, 1680, 1392,  640,  128;
		

Crossrefs

Cf. A371301 (row sums), A370174, A256893.

Programs

  • Maple
    T := proc(n, k) option remember; if k > n or k < 0 then 0 elif k = 0 then 1 else
    2*T(n-1, k-1) + T(n-1, k) + T(n-2, k-1) + T(n-2, k) fi end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Apr 22 2024
  • SageMath
    # using function riordan_array from A256893
    riordan_array(1/(1 - x), (1 + x)/(1 - x - x^2), 8)

Formula

T(n, k) = 2*T(n-1, k-1) + T(n-1, k) + T(n-2, k-1) + T(n-2, k), T(n, k) = 0 if k > n or if k < 0, T(n, 0) = 1. - Philippe Deléham , Apr 22 2024

A370177 a(n) = floor(x*a(n-1)) for n > 0 where x = (7 + sqrt(77))/2, a(0) = 1.

Original entry on oeis.org

1, 7, 55, 433, 3415, 26935, 212449, 1675687, 13216951, 104248465, 822257911, 6485544631, 51154617793, 403481136967, 3182450283319, 25101519942001, 197987791577239, 1561625180634679, 12317290805483425, 97152411902826727, 766287918958171063, 6044082316026984529
Offset: 0

Views

Author

Philippe Deléham, Mar 29 2024

Keywords

Comments

x = (7+sqrt(77))/2 = A092290 = 7.88748219...

Crossrefs

Formula

a(n) = 8*a(n-1) - 7*a(n-3) for n > 2, a(0) = 1, a(1) = 7, a(2) = 55.
G.f.: (1-x-x^2)/(1-8*x+7*x^3).
a(n) = 7*a(n-1) + 7*a(n-2) - 1.
a(n) = (12*A057090(n) + 6*A057090(n-1) + 1)/13.
a(n) = (6*(77+8*sqrt(77))*((7+sqrt(77))/2)^n + 6*(77-8*sqrt(77))*((7-sqrt(77))/2)^n + 77)/1001.
a(n) = Sum_{k = 0..n} A370174(n,k)*6^k.

A370178 a(n) = floor(x*a(n-1)) for n > 0 where x = 4 + 2*sqrt(6), a(0) = 1.

Original entry on oeis.org

1, 8, 71, 631, 5615, 49967, 444655, 3956975, 35213039, 313360111, 2788585199, 24815562479, 220833181423, 1965189951215, 17488185061103, 155627000098543, 1384921481277167, 12324387851005679, 109674474658262767, 975990900074147567, 8685322997859282671
Offset: 0

Views

Author

Philippe Deléham, Apr 02 2024

Keywords

Crossrefs

Cf. A057091, A090654 (x value), A370174.

Programs

  • Mathematica
    LinearRecurrence[{9,0,-8},{1,8,71},21] (* James C. McMahon, Apr 21 2024 *)

Formula

a(n) = 9*a(n-1) - 8*a(n-3) for n>2, a(0) = 1, a(1) = 8, a(2) = 71.
a(n) = 8*a(n-1) + 8*a(n-2) - 1.
G.f.: (1-x-x^2)/((1-x)*(1-8*x-8*x^2)).
a(n) = Sum_{k=0..n} A370174(n,k)*7^k.
a(n) = (7*(8-3*sqrt(6))*(4-2*sqrt(6))^n + 7*(8+3*sqrt(6))*(4+2*sqrt(6))^n + 8)/120.
a(n) = (14*A057091(n) + 7*A057091(n-1) + 1)/15.

A370179 a(n) = floor(x*a(n-1)) for n > 0 where x = (9 + 3*sqrt(13))/2, a(0) = 1.

Original entry on oeis.org

1, 9, 89, 881, 8729, 86489, 856961, 8491049, 84132089, 833608241, 8259662969, 81839440889, 810891934721, 8034582380489, 79609268836889, 788794660956401, 7815635368139609, 77439870261864089, 767299550670033281, 7602654788387076329, 75329589051513986489
Offset: 0

Views

Author

Philippe Deléham, Apr 24 2024

Keywords

Crossrefs

Cf. A057092, A090655 (x value), A370174.

Programs

  • Mathematica
    LinearRecurrence[{10,0,-9},{1,9,89},21] (* Stefano Spezia, Apr 24 2024 *)

Formula

a(n) = 10*a(n-1) - 9*a(n-3) for n > 2, a(0) = 1, a(1) = 9, a(2) = 89.
a(n) = 9*a(n-1) + 9*a(n-2) - 1.
G.f.: (1-x-x^2)/((1-x)*(1-9*x-9*x^2)).
a(n) = Sum_{k = 0..n} A370174(n,k)*8^k.
a(n) = (16*A057092(n) + 8*A057092(n-1) + 1)/17.
Showing 1-7 of 7 results.