A218988
Power floor sequence of 2+sqrt(8).
Original entry on oeis.org
4, 19, 91, 439, 2119, 10231, 49399, 238519, 1151671, 5560759, 26849719, 129641911, 625966519, 3022433719, 14593600951, 70464138679, 340230958519, 1642780388791, 7932045389239, 38299303112119, 184925394005431, 892898788470199, 4311296729902519
Offset: 0
a(0) = [r] = 4, where r = 2+sqrt(8).
a(1) = [4*r] = 19; a(2) = [19*r] = 91.
-
x = 2 + Sqrt[8]; z = 30; (* z = # terms in sequences *)
f[x_] := Floor[x]; c[x_] := Ceiling[x];
p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
p1[n_] := f[x*p1[n - 1]]
p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
p4[n_] := c[x*p4[n - 1]]
t1 = Table[p1[n], {n, 0, z}] (* this sequence *)
t2 = Table[p2[n], {n, 0, z}] (* A057087 *)
t3 = Table[p3[n], {n, 0, z}] (* A086347 *)
t4 = Table[p4[n], {n, 0, z}] (* A218989 *)
-
Vec((4 - x - 4*x^2) / ((1 - x)*(1 - 4*x - 4*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
A370175
a(n) = floor(x*a(n-1)) for n > 0 where x = (5+3*sqrt(5))/2, a(0) = 1.
Original entry on oeis.org
1, 5, 29, 169, 989, 5789, 33889, 198389, 1161389, 6798889, 39801389, 233001389, 1364013889, 7985076389, 46745451389, 273652638889, 1601990451389, 9378215451389, 54901029513889, 321396224826389, 1881486271701389, 11014412482638889, 64479493771701389
Offset: 0
a(0) = 1, a(1) = floor(x) = 5 where x = (5+3*sqrt(5))/2.
a(2) = floor(5*x) = 29, a(3) = floor(29*x) = 169.
-
NestList[Floor[#*(5 + 3*Sqrt[5])/2] &, 1, 30] (* or *)
LinearRecurrence[{6, 0, -5}, {1, 5, 29}, 30] (* Paolo Xausa, May 25 2024 *)
A370176
a(n) = floor(x*a(n-1)) for n > 0 where x = 3+sqrt(15), a(0) = 1.
Original entry on oeis.org
1, 6, 41, 281, 1931, 13271, 91211, 626891, 4308611, 29613011, 203529731, 1398856451, 9614317091, 66079041251, 454160150051, 3121435147811, 21453571787171, 147450041609891, 1013421680382371, 6965230331953571, 47871912074015651, 329022854435815331, 2261368599058985891
Offset: 0
a(0) = 1;
a(1) = floor(x) = 6 where x = 3+sqrt(15);
a(2) = floor(6*x) = 41;
a(3) = floor(41*x) = 281.
-
NestList[Floor[(Sqrt[15]+3)*#] &, 1, 25] (* or *)
LinearRecurrence[{7, 0, -6}, {1, 6, 41}, 25] (* Paolo Xausa, Mar 31 2024 *)
A371300
Triangle read by rows: Riordan array (1/(1 - x), (1 + x)/(1 - x - x^2)).
Original entry on oeis.org
1, 1, 2, 1, 5, 4, 1, 10, 16, 8, 1, 18, 45, 44, 16, 1, 31, 107, 158, 112, 32, 1, 52, 232, 461, 488, 272, 64, 1, 86, 474, 1190, 1680, 1392, 640, 128, 1, 141, 930, 2831, 5009, 5512, 3760, 1472, 256, 1, 230, 1772, 6355, 13541, 18602, 16816, 9760, 3328, 512
Offset: 0
Triangle begins:
[0] 1;
[1] 1, 2;
[2] 1, 5, 4;
[3] 1, 10, 16, 8;
[4] 1, 18, 45, 44, 16;
[5] 1, 31, 107, 158, 112, 32;
[6] 1, 52, 232, 461, 488, 272, 64;
[7] 1, 86, 474, 1190, 1680, 1392, 640, 128;
-
T := proc(n, k) option remember; if k > n or k < 0 then 0 elif k = 0 then 1 else
2*T(n-1, k-1) + T(n-1, k) + T(n-2, k-1) + T(n-2, k) fi end:
for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Apr 22 2024
-
# using function riordan_array from A256893
riordan_array(1/(1 - x), (1 + x)/(1 - x - x^2), 8)
A370177
a(n) = floor(x*a(n-1)) for n > 0 where x = (7 + sqrt(77))/2, a(0) = 1.
Original entry on oeis.org
1, 7, 55, 433, 3415, 26935, 212449, 1675687, 13216951, 104248465, 822257911, 6485544631, 51154617793, 403481136967, 3182450283319, 25101519942001, 197987791577239, 1561625180634679, 12317290805483425, 97152411902826727, 766287918958171063, 6044082316026984529
Offset: 0
A370178
a(n) = floor(x*a(n-1)) for n > 0 where x = 4 + 2*sqrt(6), a(0) = 1.
Original entry on oeis.org
1, 8, 71, 631, 5615, 49967, 444655, 3956975, 35213039, 313360111, 2788585199, 24815562479, 220833181423, 1965189951215, 17488185061103, 155627000098543, 1384921481277167, 12324387851005679, 109674474658262767, 975990900074147567, 8685322997859282671
Offset: 0
A370179
a(n) = floor(x*a(n-1)) for n > 0 where x = (9 + 3*sqrt(13))/2, a(0) = 1.
Original entry on oeis.org
1, 9, 89, 881, 8729, 86489, 856961, 8491049, 84132089, 833608241, 8259662969, 81839440889, 810891934721, 8034582380489, 79609268836889, 788794660956401, 7815635368139609, 77439870261864089, 767299550670033281, 7602654788387076329, 75329589051513986489
Offset: 0
-
LinearRecurrence[{10,0,-9},{1,9,89},21] (* Stefano Spezia, Apr 24 2024 *)
Showing 1-7 of 7 results.
Comments