A370209 a(n) is the smallest number of the form 2^k * p * (2^(k+1) * p + 1) where 2 < p < 2^(k+1) is the n-th prime and 2^(k+1) * p + 1 is prime, or -1 if no such number exists.
78, 820, 6328, 62128, 5539456, 155155972096, 739936, 69342976, 431056, 31494016, 44864128, 3525354496, 3788128
Offset: 2
Keywords
Examples
a(2) = 78 = 2 * 3 * 13 = A262259(3) and SRS(78) consists of 2 unimodal parts 121 that meet at diagonal position (54, 54). a(4) = 6328 = 8 * 7 * 113 = A262259(11) which demonstrates that 2^k < p < 2^(k+1) need not be true. a(15) with k = 582 and p = 47, its second prime factor 2^(k+1) * p + 1 has 178 digits so that a(15) has 355 digits. a(16) = 24129129742336 = 2^16 * 53 * 6946817. Table of records of number of digits a(2) through a(500): sequence index 2 3 4 5 6 7 15 76 419 438 number of digits 2 3 4 5 7 12 355 3854 5856 20049
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..75 [Notice that a(15) has 355 digits, so the graph cuts off after 14 terms. - _N. J. A. Sloane_, Feb 18 2024]
Crossrefs
Programs
-
Mathematica
minExp[p_] := Module[{k=Floor[Log[2, p]]}, NestWhile[#+1&, k+1, !PrimeQ[2^# p+1]&]-1]/;PrimeQ[p] a370209[p_] := Module[{k=minExp[p]}, 2^k p(2^(k+1)p+1)]/;PrimeQ[p] Map[a370209[Prime[#]]&, Range[2, 14]] (* a(15) is too large to list *)
-
Python
from itertools import count from sympy import prime, isprime def A370209(n): p = prime(n) return next((p<
Chai Wah Wu, Feb 17 2024
Formula
a(n) = min( 2^k * p * (2^(k+1) * p + 1) : p = prime(n), 2 < p < 2^(k+1), 2^(k+1) * p + 1 is prime ), n>=2.
Comments