A372180 Square array read by antidiagonals upwards in which T(n,m) is the n-th number whose symmetric representation of sigma consists of m copies of unimodal pattern 121 (separated by 0's if m > 1).
6, 12, 78, 20, 102, 1014, 24, 114, 1734, 12246, 28, 138, 2166, 12714, 171366, 40, 174, 3174, 13026, 501126, 1922622, 48, 186, 5046, 13182, 781926, 2057406, 28960854, 56, 222, 5766, 13494, 1679046, 2067546, 144825414, 300014754, 80, 246, 8214, 13962, 4243686, 2072382, 282275286, 300137214, 4174476774
Offset: 1
Examples
a(1) = T(1,1) = 6, its symmetric representation of sigma, SRS(6), has unimodal pattern 121 and a single unit of width 2 at the diagonal. a(3) = T(1,2) = 78, SRS(78) has unimodal pattern 1210121; a(10) = T(1,4) = 12246, SRS(12246) has unimodal pattern 121012101210121; both symmetric representations of sigma have width 0 at the diagonal where two parts meets. Each number in the m-th column has 2m odd divisors. T(1,9) = 4174476774. ------------------------------------------------------------------------- n\m 1 2 3 4 5 6 7 8 ------------------------------------------------------------------------- 1| 6 78 1014 12246 171366 1922622 28960854 300014754 ... 2| 12 102 1734 12714 501126 2057406 144825414 300137214 ... 3| 20 114 2166 13026 781926 2067546 282275286 300235182 ... 4| 24 138 3174 13182 1679046 2072382 888215334 300357642 ... 5| 28 174 5046 13494 4243686 2081742 3568939926 300431118 ... 6| 40 186 5766 13962 5541126 2091882 ... 300602562 ... 7| 48 222 8214 14118 8487372 2097966 300651546 ... 8| 56 246 10086 14898 11082252 2110134 300896466 ... 9| 80 258 10092 15054 11244966 2112162 301165878 ... 10| 88 282 11094 15366 16954566 2116218 301386306 ... ...
Crossrefs
Programs
-
Mathematica
divQ[k_, {d1_, d2_, d3_}] := d2<2^(k+1)d1&&2^(k+1)d2
Comments