cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A303542 Number of chordless cycles in the n X n white bishop graph.

Original entry on oeis.org

0, 1, 3, 19, 97, 678, 5098, 52170, 582342, 8221455, 125339157, 2312227461, 45664819407, 1056675718876, 26022340062564, 734233350312484, 21939269071805596, 738213020202917421, 26196923530426606903, 1032994592794340235015, 42808941242555092330701
Offset: 2

Views

Author

Eric W. Weisstein, Apr 25 2018

Keywords

Comments

The chordless cycles in a bishop graph are those cycles which have at most one edge on any diagonal or antidiagonal. - Andrew Howroyd, Apr 29 2018

Crossrefs

Cf. A070968.
Cf. A370210 (black bishop), A370224 (bishop).

Programs

  • PARI
    SafeMat(m)={my(d=matsize(m));((j,k)->if(j>0&&j<=d[1]&&k>0&&k<=d[2], m[j,k]))}
    CC(sig,x)={my(v=SafeMat([;]), total=0);
    forstep(i=#sig, 2, -1, my(t=sig[i]);
       v=SafeMat(matrix(t, t\2, j, k, v(j,k) + x*(if(j==2&&k==1, binomial(t,2)) + v(j-2,k-1)*binomial(t-j+2,2) + v(j-1,k)*2*k*(t-j+1) + v(j,k+1)*2*k*(k+1))));
       total+=sum(j=1,t,v(j,1)) );
    total}
    Bishop(n, white)=vector(n-if(white, n%2, 1-n%2), i, n-i+if(white, 1-i%2, i%2));
    a(n) = CC(Bishop(n,1),1) \\ Andrew Howroyd, Apr 29 2018
    
  • PARI
    \\ CCGenRook, Bishop defined in A370224 (slightly faster version).
    a(n) = subst(CCGenRook(Bishop(n,1)), y, 1) \\ Andrew Howroyd, May 27 2025

Formula

For n > 1, a(n) = A370224(n) - A370210(n).

Extensions

a(8)-a(22) from Andrew Howroyd, Apr 29 2018

A370210 Number of chordless cycles in the n X n black bishop graph.

Original entry on oeis.org

0, 0, 0, 3, 15, 97, 597, 5098, 47746, 582342, 7691278, 125339157, 2195109753, 45664819407, 1013323126923, 26022340062564, 709267685968788, 21939269071805596, 717007984481424300, 26196923530426606903, 1007535882284116545523, 42808941242555092330701
Offset: 1

Views

Author

Eric W. Weisstein, Feb 12 2024

Keywords

Crossrefs

Cf. A303542 (white bishop graph), A370224 (bishop graph).

Programs

  • PARI
    \\ CCGenRook, Bishop defined in A370224.
    a(n) = subst(CCGenRook(Bishop(n,0)), y, 1) \\ Andrew Howroyd, May 27 2025

Formula

For n > 1, a(n) = A370224(n) - A303542(n).

Extensions

a(21) onwards from Andrew Howroyd, May 27 2025

A370228 Number of chordless cycles in the n-triangular honeycomb bishop graph.

Original entry on oeis.org

0, 0, 1, 7, 39, 237, 1734, 15450, 165682, 2102614, 31015311, 524013081, 10030700577, 215582832795, 5159960081308, 136564828657252, 3972563571866868, 126343835507748636, 4372455341681750061, 163953900979575446619, 6635493391775352850603, 288852182590324903158841
Offset: 1

Views

Author

Eric W. Weisstein, Feb 12 2024

Keywords

Crossrefs

Cf. A370224.

Programs

  • PARI
    \\ CCGenRook defined in A370224.
    a(n) = subst(CCGenRook(vector(n,i,n+1-i)), y, 1) \\ Andrew Howroyd, May 27 2025

Extensions

a(12) onwards from Andrew Howroyd, May 27 2025
Showing 1-3 of 3 results.