cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A370363 Number A(n,k) of partitions of [k*n] into n sets of size k having at least one set of consecutive numbers whose maximum (if k>0) is a multiple of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 7, 1, 1, 0, 1, 1, 28, 45, 1, 1, 0, 1, 1, 103, 1063, 401, 1, 1, 0, 1, 1, 376, 22893, 74296, 4355, 1, 1, 0, 1, 1, 1384, 503751, 13080721, 8182855, 56127, 1, 1, 0, 1, 1, 5146, 11432655, 2443061876, 15237712355, 1305232804, 836353, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 16 2024

Keywords

Examples

			A(3,2) = 7: 12|34|56, 12|35|46, 12|36|45, 13|24|56, 14|23|56, 15|26|34, 16|25|34.
Square array A(n,k) begins:
  0, 0,   0,     0,        0,          0, ...
  1, 1,   1,     1,        1,          1, ...
  1, 1,   1,     1,        1,          1, ...
  1, 1,   7,    28,      103,        376, ...
  1, 1,  45,  1063,    22893,     503751, ...
  1, 1, 401, 74296, 13080721, 2443061876, ...
		

Crossrefs

Columns k=0+1,2-3 give: A057427, A370253, A370358.
Rows n=0,1+2,3 give: A000004, A000012, A370487.
Main diagonal gives A370364.
Antidiagonal sums give A370365.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k=0, signum(n), add(
          (-1)^(n-j+1)*binomial(n, j)*(k*j)!/(j!*k!^j), j=0..n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);

Formula

A(n,k) = A060540(n,k) - A370366(n,k) for n,k >= 1.
Showing 1-1 of 1 results.