A370366
Number A(n,k) of partitions of [k*n] into n sets of size k having no set of consecutive numbers whose maximum (if k>0) is a multiple of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 9, 8, 0, 0, 1, 0, 34, 252, 60, 0, 0, 1, 0, 125, 5672, 14337, 544, 0, 0, 1, 0, 461, 125750, 2604732, 1327104, 6040, 0, 0, 1, 0, 1715, 2857472, 488360625, 2533087904, 182407545, 79008, 0, 0
Offset: 0
A(2,3) = 9: 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 0, 0, 0, 0, 0, ...
0, 0, 2, 9, 34, 125, ...
0, 0, 8, 252, 5672, 125750, ...
0, 0, 60, 14337, 2604732, 488360625, ...
0, 0, 544, 1327104, 2533087904, 5192229797500, ...
-
A:= proc(n, k) `if`(k=0,`if`(n=0, 1, 0), add(
(-1)^(n-j)*binomial(n, j)*(k*j)!/(j!*k!^j), j=0..n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
A370358
Number of partitions of [3n] into n sets of size 3 having at least one set {3j-2,3j-1,3j} (1<=j<=n).
Original entry on oeis.org
0, 1, 1, 28, 1063, 74296, 8182855, 1305232804, 284438292607, 81167321350432, 29367491879327959, 13135455977606994340, 7116140280642196449151, 4591529352468711908776288, 3479040085783649820897765223, 3058744793640846605215609362436
Offset: 0
a(1) = 1: 123.
a(2) = 1: 123|456.
a(3) = 28: 123|456|789, 123|457|689, 123|458|679, 123|459|678, 123|467|589, 123|468|579, 123|469|578, 123|478|569, 123|479|568, 123|489|567, 124|356|789, 125|346|789, 126|345|789, 127|389|456, 128|379|456, 129|378|456, 134|256|789, 135|246|789, 136|245|789, 137|289|456, 138|279|456, 139|278|456, 145|236|789, 146|235|789, 156|234|789, 178|239|456, 179|238|456, 189|237|456.
-
b:= proc(n) option remember; `if`(n<3, [1, 0, 9][n+1],
9*(n*(n-1)/2*b(n-1)+(n-1)^2*b(n-2)+(n-1)*(n-2)/2*b(n-3)))
end:
a:= n-> (3*n)!/(n!*(3!)^n)-b(n):
seq(a(n), n=0..20);
A370365
Total sum over all j in [n] of the number of partitions of [j*(n-j)] into (n-j) sets of size j having at least one set of consecutive numbers whose maximum (if j>0) is a multiple of j.
Original entry on oeis.org
0, 1, 2, 3, 4, 11, 77, 1571, 101924, 21824842, 18998281193, 63437859518312, 1037654210033812290, 72422876152852051595343, 27306605231809196751929593081, 50723306700937648229840111395656830, 510196838745355443955126736574361550469276
Offset: 0
-
b:= proc(n, k) option remember; `if`(k=0, signum(n), add(
(-1)^(n-j+1)*binomial(n, j)*(k*j)!/(j!*k!^j), j=0..n-1))
end:
a:= n-> add(b(j, n-j), j=0..n):
seq(a(n), n=0..16);
A370364
Number of partitions of [n^2] into n sets of size n having at least one set of consecutive numbers whose maximum (if n>0) is a multiple of n.
Original entry on oeis.org
0, 1, 1, 28, 22893, 2443061876, 68542265471953355, 833412961429901104030214430, 6514551431426932053792271970458170132097, 45458343253887079540702419310885199704811913950207054152, 375236832464739513549091449370258959406125572044428827214970469920572831639
Offset: 0
a(1) = 1: 1.
a(2) = 1: 12|34.
a(3) = 28: 123|456|789, 123|457|689, 123|458|679, 123|459|678, 123|467|589, 123|468|579, 123|469|578, 123|478|569, 123|479|568, 123|489|567, 124|356|789, 125|346|789, 126|345|789, 127|389|456, 128|379|456, 129|378|456, 134|256|789, 135|246|789, 136|245|789, 137|289|456, 138|279|456, 139|278|456, 145|236|789, 146|235|789, 156|234|789, 178|239|456, 179|238|456, 189|237|456.
A370487
Number of partitions of [3n] into 3 sets of size n having at least one set of consecutive numbers whose maximum (if n>0) is a multiple of n.
Original entry on oeis.org
1, 1, 7, 28, 103, 376, 1384, 5146, 19303, 72928, 277132, 1058146, 4056232, 15600898, 60174898, 232676278, 901620583, 3500409328, 13612702948, 53017895698, 206769793228, 807386811658, 3156148445578, 12350146091398, 48371405524648, 189615909656626, 743877799422154
Offset: 0
a(0) = 1: {}|{}|{}.
a(1) = 1: 1|2|3.
a(2) = 7: 12|34|56, 12|35|46, 12|36|45, 13|24|56, 14|23|56, 15|26|34, 16|25|34.
-
a:= n-> `if`(n=0, 1, 3*binomial(2*n-1,n)-2):
seq(a(n), n=0..27);
# second Maple program:
a:= proc(n) option remember; `if`(n<3, 3*n*(n-1)+1, ((15*n^2
-31*n+12)*a(n-1)-(3*n-2)*(4*n-6)*a(n-2))/((3*n-5)*n))
end:
seq(a(n), n=0..27);
Showing 1-5 of 5 results.