cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A370363 Number A(n,k) of partitions of [k*n] into n sets of size k having at least one set of consecutive numbers whose maximum (if k>0) is a multiple of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 7, 1, 1, 0, 1, 1, 28, 45, 1, 1, 0, 1, 1, 103, 1063, 401, 1, 1, 0, 1, 1, 376, 22893, 74296, 4355, 1, 1, 0, 1, 1, 1384, 503751, 13080721, 8182855, 56127, 1, 1, 0, 1, 1, 5146, 11432655, 2443061876, 15237712355, 1305232804, 836353, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 16 2024

Keywords

Examples

			A(3,2) = 7: 12|34|56, 12|35|46, 12|36|45, 13|24|56, 14|23|56, 15|26|34, 16|25|34.
Square array A(n,k) begins:
  0, 0,   0,     0,        0,          0, ...
  1, 1,   1,     1,        1,          1, ...
  1, 1,   1,     1,        1,          1, ...
  1, 1,   7,    28,      103,        376, ...
  1, 1,  45,  1063,    22893,     503751, ...
  1, 1, 401, 74296, 13080721, 2443061876, ...
		

Crossrefs

Columns k=0+1,2-3 give: A057427, A370253, A370358.
Rows n=0,1+2,3 give: A000004, A000012, A370487.
Main diagonal gives A370364.
Antidiagonal sums give A370365.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k=0, signum(n), add(
          (-1)^(n-j+1)*binomial(n, j)*(k*j)!/(j!*k!^j), j=0..n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);

Formula

A(n,k) = A060540(n,k) - A370366(n,k) for n,k >= 1.

A370357 Number of partitions of [3n] into n sets of size 3 avoiding any set {3j-2,3j-1,3j} (1<=j<=n).

Original entry on oeis.org

1, 0, 9, 252, 14337, 1327104, 182407545, 34906943196, 8877242235393, 2896378850249568, 1179516253790272041, 586470881874514605660, 349649630741370155550849, 246214807676005971547223712, 202182156277565590613022234777, 191496746966087534845272710637564
Offset: 0

Views

Author

Alois P. Heinz, Feb 16 2024

Keywords

Examples

			a(0) = 1: the empty partition satisfies the condition.
a(1) = 0: 123 is not counted.
a(2) = 9: 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234 are counted. 123|456 is not counted.
		

Crossrefs

Column k=0 of A370347.
Column k=3 of A370366.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 0, 9][n+1],
          9*(n*(n-1)/2*a(n-1)+(n-1)^2*a(n-2)+(n-1)*(n-2)/2*a(n-3)))
        end:
    seq(a(n), n=0..20);

Formula

a(n) = Sum_{j=0..n} (-1)^(n-j) * binomial(n,j) * A025035(j).
a(n) = A025035(n) - A370358(n).
a(n) mod 9 = A000007(n).
a(n) mod 2 = A059841(n).

A370347 Number T(n,k) of partitions of [3n] into n sets of size 3 having exactly k sets {3j-2,3j-1,3j} (1<=j<=n); triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 9, 0, 1, 252, 27, 0, 1, 14337, 1008, 54, 0, 1, 1327104, 71685, 2520, 90, 0, 1, 182407545, 7962624, 215055, 5040, 135, 0, 1, 34906943196, 1276852815, 27869184, 501795, 8820, 189, 0, 1, 8877242235393, 279255545568, 5107411260, 74317824, 1003590, 14112, 252, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 15 2024

Keywords

Examples

			T(2,0) = 9: 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234.
T(2,2) = 1: 123|456.
Triangle T(n,k) begins:
            1;
            0,          1;
            9,          0,        1;
          252,         27,        0,      1;
        14337,       1008,       54,      0,    1;
      1327104,      71685,     2520,     90,    0,   1;
    182407545,    7962624,   215055,   5040,  135,   0, 1;
  34906943196, 1276852815, 27869184, 501795, 8820, 189, 0, 1;
  ...
		

Crossrefs

Row sums give A025035.
Column k=0 gives A370357.
T(n+1,n-1) gives A027468.
T(n+2,n-1) gives 252*A000292.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<3, [1, 0, 9][n+1],
          9*(n*(n-1)/2*b(n-1)+(n-1)^2*b(n-2)+(n-1)*(n-2)/2*b(n-3)))
        end:
    T:= (n, k)-> b(n-k)*binomial(n, k):
    seq(seq(T(n, k), k=0..n), n=0..10);

Formula

T(n,k) = binomial(n,k) * A370357(n-k).
Sum_{k=1..n} T(n,k) = A370358(n).
T(n,k) mod 9 = A023531(n,k).
Showing 1-3 of 3 results.