A370315 Number of unlabeled simple graphs with n possibly isolated vertices and up to n edges.
1, 1, 2, 4, 9, 20, 54, 146, 436, 1372, 4577, 15971, 58376, 221876, 876012, 3583099, 15159817, 66248609, 298678064, 1387677971, 6637246978, 32648574416, 165002122350, 855937433641, 4553114299140, 24813471826280, 138417885372373, 789683693019999, 4603838061688077
Offset: 0
Keywords
Examples
The a(1) = 1 through a(4) = 9 graph edge sets: {} {} {} {} {12} {12} {12} {12-13} {12-13} {12-13-23} {12-34} {12-13-14} {12-13-23} {12-13-24} {12-13-14-23} {12-13-24-34}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
The labeled version is A369192.
Programs
-
Mathematica
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]]; Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]], Length[#]<=n&]]],{n,0,5}]
-
PARI
a(n) = if(n<=1, n>=0, polcoef(G(n, O(x*x^n))/(1-x),n)) \\ G(n) defined in A008406. - Andrew Howroyd, Feb 20 2024
Formula
Sum of first n+1 terms of row n of A008406.