A370316 Number of unlabeled simple graphs covering n vertices with at most n edges.
1, 0, 1, 2, 5, 10, 28, 68, 193, 534, 1568, 4635, 14146, 43610, 137015, 435227, 1400058, 4547768, 14917504, 49348612, 164596939, 553177992, 1872805144, 6385039022, 21917878860, 75739158828, 263438869515, 922219844982, 3249042441125, 11519128834499, 41097058489426
Offset: 0
Keywords
Examples
The a(0) = 1 through a(5) = 10 simple graphs: {} . {12} {12-13} {12-34} {12-13-45} {12-13-23} {12-13-14} {12-13-14-15} {12-13-24} {12-13-14-25} {12-13-14-23} {12-13-23-45} {12-13-24-34} {12-13-24-35} {12-13-14-15-23} {12-13-14-23-25} {12-13-14-23-45} {12-13-14-25-35} {12-13-24-35-45}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
The labeled version is A369191.
Programs
-
Mathematica
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]]; Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}],{0,n}], Union@@#==Range[n]&]]],{n,0,5}]
-
PARI
\\ G defined in A008406. a(n)=my(A=O(x*x^n)); if(n==0, 1, polcoef((G(n,A)-G(n-1,A))/(1-x), n)) \\ Andrew Howroyd, Feb 19 2024
Extensions
a(8) onwards from Andrew Howroyd, Feb 19 2024