cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A177251 Number of permutations of [n] having no adjacent 3-cycles, i.e., no cycles of the form (i, i+1, i+2).

Original entry on oeis.org

1, 1, 2, 5, 22, 114, 697, 4923, 39612, 357899, 3588836, 39556420, 475392841, 6187284605, 86701097310, 1301467245329, 20835850494474, 354382860600678, 6381494425302865, 121290065781743383, 2426510081356069016, 50969474697328055063, 1121571023472780698152
Offset: 0

Views

Author

Emeric Deutsch, May 07 2010

Keywords

Examples

			a(4)=22 because the only permutations of {1,2,3,4} having adjacent 3-cycles are (123)(4) and (1)(234).
		

Crossrefs

Programs

  • Magma
    A177251:= func< n | (&+[(-1)^j*Factorial(n-2*j)/Factorial(j): j in [0..Floor(n/3)]]) >;
    [A177251(n): n in [0..30]]; // G. C. Greubel, Apr 28 2024
    
  • Maple
    a := proc (n) options operator, arrow: sum((-1)^j*factorial(n-2*j)/factorial(j), j = 0 .. floor((1/3)*n)) end proc: seq(a(n), n = 0 .. 22);
  • Mathematica
    a[n_] := Sum[(-1)^j*(n - 2*j)!/j!, {j, 0, n/3}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 17 2017 *)
  • SageMath
    def A177251(n): return sum((-1)^j*factorial(n-2*j)/factorial(j) for j in range(1+n//3))
    [A177251(n) for n in range(31)] # G. C. Greubel, Apr 28 2024

Formula

a(n) = Sum_{j=0..floor(n/3)} (-1)^j*(n-2*j)!/j!.
a(n) = A177250(n,0).
a(n) - n*a(n-1) = 2*a(n-3) + 3*(-1)^(n/3) if 3 | n, otherwise a(n) - n*a(n-1) = 2*a(n-3).
lim_{n -> oo} a(n)/n! = 1.
The o.g.f. g(z) satisfies z^2*(1+z^3)*g'(z) - (1+z^3)(1-z-2z^3)g(z) + 1 - 2z^3 = 0; g(0)=1.
G.f.: hypergeometric2F0([1,1], [], x/(1+x^3))/(1+x^3). - Mark van Hoeij, Nov 08 2011
D-finite with recurrence a(n) = n*a(n-1) + a(n-3) + (n-3)*a(n-4) + 2*a(n-6). - R. J. Mathar, Jul 26 2022
G.f.: Sum_{k>=0} k! * x^k / (1+x^3)^(k+1). - Seiichi Manyama, Feb 20 2024

Extensions

Crossreferences corrected by Emeric Deutsch, May 09 2010

A370569 Number of permutations of [n] having no adjacent 2-cycles and no adjacent 4-cycles.

Original entry on oeis.org

1, 1, 1, 4, 18, 97, 607, 4358, 35523, 324356, 3280902, 36427352, 440515699, 5764104507, 81147821501, 1223090709078, 19651920713844, 335323035157947, 6055709997021397, 115397482250691724, 2314064310772997407, 48711753977589111112, 1073990818947724506060
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*x^k*((1-x^2)/(1-x^6))^(k+1)))

Formula

G.f.: Sum_{k>=0} k! * x^k * ( (1-x^2)/(1-x^6) )^(k+1).
a(n) = Sum_{i, j>=0 and 2*i+4*j<=n} (-1)^(i+j) * (n-i-3*j)!/(i!*j!).

A370323 Number of derangements of [n] having no adjacent 2-cycles, no adjacent 3-cycles and no adjacent 4-cycles.

Original entry on oeis.org

1, 0, 0, 1, 6, 35, 217, 1568, 12848, 117738, 1194019, 13282346, 160856190, 2107154067, 29691159876, 447836111629, 7199765822643, 122909558878512, 2220556571338744, 42329227454294820, 849072524072460101, 17877662074795269964, 394248958294191005180
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*x^k*((1-x)/(1-x^5))^(k+1)))

Formula

G.f.: Sum_{k>=0} k! * x^k * ( (1-x)/(1-x^5) )^(k+1).
a(n) = Sum_{i, j, k, l>=0 and i+2*j+3*k+4*l<=n} (-1)^(i+j+k+l) * (n-j-2*k-3*l)!/(i!*j!*k!*l!).
Showing 1-3 of 3 results.